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Outline
● Seq2Seq modelling via RNN Encoder-Decoder
● Attention Mechanism
● Self-Attention

 

● Transformer
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Sequence-to-Sequence Modelling

● Many-to-Many mapping
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Sequence-to-Sequence Modelling

● Many-to-Many mapping

● Some approximation & 
conditioning required!
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RNN Encoder-Decoder

9/10/2019
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RNN Encoder-Decoder
● Break the Many-to-Many into 

– Many-to-One 

– One-to-Many
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RNN Encoder-Decoder
● Break the Many-to-Many into 

– Many-to-One ↔ Encoder

– One-to-Many ↔ Decoder

h1 h2 hTx. . .

s1 s2 . . . sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

. . .

E. Loweimi   3/38

Encoder Decoder



  

RNN Encoder-Decoder
● Break the Many-to-Many into 

– Many-to-One ↔ Encoder

– One-to-Many ↔ Decoder

● “One” → Bottleneck

– Context/thought vector 

– Fixed-length representation

– Combines all info
● Local/Global/Dependencies
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RNN Encoder-Decoder Problems (1)

● Sequential computation is hard to parallelise
– Not what modern HPCs excels at!
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CPUs → Multiple Cores
GPUs → Hundreds to 
Thousands Cores
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RNN Encoder-Decoder Problems (2)

● Information flow
– Combination of all info in a single embedding
– Info path between En and De states is long
– Capturing long-term dependencies is tricky
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Possible Solutions/Alternatives 
● Attention mechanism
● Transformer
● CNNs for sequence modelling

– Appendix (A)
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Attention Mechanism
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Attention Mechanism
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Attention Mechanism
● Attention is a focus mechanism on task-

important parts of input

● Input ← A set of {key:value} pairs, and queries

● Output → A weighted mean of values
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Attention Mechanism
● Attention is a focus mechanism on task-

important parts of input
● Input ← A set of key-value pairs, and queries
● Output → A weighted mean of values
● Weights→prop. to similarity of query & keys
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Attention Mechanism
● Query (Q)

– Determines where focus should be steered

● Keys (K) and Values (V) pairs, {k:v}
– Some prototypes

● In RNN En-De models
– Q → Decoder states (si-1)

– K and V→Encoder states (h1:Tx) →Identical HERE! 
E. Loweimi   7/38



  

Attention Advantages
● Solves the info bottleneck issue of RNN En-De 
● Shorten info path between h1:Tx and each si 

– Long-range dependencies better captured/modelled

E. Loweimi   8/38
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Attention Advantages
● Solves the info bottleneck issue of RNN En-De
● Shorten info path between h1:Tx and each si 
● Helps with gradient vanishing
● Jointly learns alignment & classification

– Visualisation and understanding
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Attention Advantages in NMT
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Dealing with long-range dependencies Visualisation of alignment



  

Attention Model
   

● Score (eij)

● Alignment (αij)

● Context (cij)
– aka glimpse (gi)

●  

● RNN Decoder
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Alignment model → Compute Score

● Dot-product
– Basic 
– Linear projection
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Alignment model → Compute Score

● Dot-product
– Basic 
– Linear projection

  

● Additive
– Content
– Location
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Sharpening the Focus / Attention

E. Loweimi 11/38

● Use inverse temperature, β,
– β > 1  =>  sharpening the pdf

– β < 1  =>  smoothing the pdf

● Top-k
– Keep top k values of ei → Set the rest to zero → Normalise

● Caveat: requires computing all eij s
– Computational complexity → O(TxTy)

– Solution: Windowed attention



  

Sharpening the Focus / Attention

E. Loweimi 11/38

● Windowed Attention

– Window length: 2w → 2w << L 

– Window centre: pi → median of αi-1

● αi-1 shortlists the encoder states (hj)

– Compute attention only on 

● Caveats:
– Not useful for short utterances, too sharp

● Solution → Smoothing → Replace exp with sigmoid in softmax

– Window length and location are suboptimal
● Solution → Fully-trainable Windowed Attention



  

(Fully-Trainable) Windowed Attention
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(Fully-Trainable) Windowed Attention
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(Fully-Trainable) Windowed Attention
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What if X sequence is very 
long & yi is only correlated 
with a small part of X ...
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(Fully-Trainable) Windowed Attention
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long & yi is only correlated 
with a small part of X ...
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ci contains noisy info from 
irrelevant hj→Suboptimal attention



  

(Fully-Trainable) Windowed Attention
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Many αij are zero. 
Why/Can/should we learn 
them?!



  

(Fully-Trainable) Windowed Attention
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Impose sparsity by windowing ...



  

(Fully-Trainable) Windowed Attention

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019

E. Loweimi 11/38

Fully-trainable → BOTH window 
length and window shift are learned.



  

(Fully-Trainable) Windowed Attention

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019
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Fully-trainable



  

Self-Attention
● An attention within a layer (representation)

– Encoder ↔ Classic attention ↔ Decoder

. . .

. . .

. . .

. . .
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Self-Attention
● An attention within a layer (representation)
● Each weight is prop. to similarity of two vertices

. . .

. . .

. . .

. . .
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Self-Attention Advantages
✔ Constant path length between positions, O(1)

– Direct interaction, no locality bias

✔ Long-range dependencies are captured well
✔ Multiplicative interaction → some kind of gating

✔ Permutation invariant
✔ Trivial to parallelise

. . .

. . .

. . .

. . .
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Convolution vs Self-Attention

● CNN
– Linear Time Invariant

– Suboptimal filter replication

– Seq. modelling requires depth

● Self-Attention
– Linear(?) Time Variant

– One filter per node

– Direct interaction for all
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Self-Attention Disadvantageous
● Globally, sequentiality is lost

– has no notion of temporal order!
– Permutation invariant!

● Locally, temporal resolution is lost
– Owing to attention-weighted averaging
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Self-Attention Disadvantageous
● Globally, sequentiality is lost

– has no notion of temporal order!
– Permutation invariant!

● Locally, temporal resolution is lost
– Owing to attention-weighted averaging

 

● Solution: Positional Encoding

E. Loweimi 15/38



  

Computational Complexity

● Self-attention → O(n2d)
– Quadratic in sequence length (n)
– Linear in representation dimension (d)

● RNN → O(nd2)
– Linear in seq. length; Quadratic in repr. dim
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Computational Complexity
● Self-attention → O(n2d)

– Quadratic in sequence length (n)
– Linear in representation dimension (d)

● RNN → O(nd2)
– Linear in seq. length; Quadratic in repr. dim

● If n < d → Self-attention is more economic, e.g. NMT
● If n > d → Self-attention is parallelisable, e.g. ASR
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Transformers



  

Architecture 

Primary
winding

Secondary
winding



  

Ingredients



  

Ingredients
● Encoder-Decoder structure
● Positional Embedding
● Multi-Head self-Attention
● Feed Forward NN (FFNN)
● Add & Norm

E. Loweimi 17/38
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Encoder
● 6 Layers, each one has ... 

– Sublayer 1: Multi-head Self-attention
– Sublayer 2: (Point-wise) FFNN

● Add & Norm after each sublayer
– Sublayer = Norm(x+sublayer(x))

1

2

E. Loweimi 18/38



  

Multi-head Self-attention – Intuition
● Process multiple types/streams of info or 

subtasks independently
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– Did what?
– To whom?
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Multi-head Self-attention – Intuition
● Process multiple types/streams of info or 

subtasks independently, e.g. 
– Who? 
– Did what?
– To whom?

Each subtask and/or piece of info requires 
a different solution and attention.
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Multi-head Self-attention – Intuition
● Process multiple types of info

Head 1: Who? Head 2: Did what? Head 3: To whom?
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Multi-head Self-attention – Intuition
● Process multiple types of info Parallelisable

E. Loweimi 19/38

Head 1: Who? Head 2: Did what? Head 3: To whom?



  

Multi-head Self-attention – Intuition

 – Two heads form encoder self-attention at layer 5 (out of 6). 
  

 – Heads learn to perform different tasks.
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Multi-head self-Attention

Linearly combines heads’ outputs.

Value Key Query

E. Loweimi 20/38



  

Single-head self-Attention
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Single-head self-Attention
● Given: Query, Key and Value ({k:v})

● Output: attention-weighted mean of Values

● Weights prop. to similarity of K & Q 
● Similarity: scaled-dot product

– Scaled → to control magnitude@high dim
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Generate Q, K, V via Linear transformation

● Embedding → Linear transformation 

...

...

...

.

.

.

x1

x2

xn

dmodel = 512

WK
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WV
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...
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vn
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...
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.
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q2

qn
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kn

 
Q=XWQ

K=XWk

V=XWv

Note dq = dk

Not to be confused with similar 
Wi belongs to the heads.
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Multi-head self-Attention

Linear projection to space where dot 
product is a better proxy for similarity. Value Key Query

– dq = dk = dv = dmodel / h 
– dmodel = 512,   h = 8

E. Loweimi 22/38



  

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

E. Loweimi 23/38

Affine Trans 1
(W1, b1)

ReLU
Affine Trans 2

(W2, b2)

zi

Point-wise FFNN



  

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

. . .

FFNN FFNN FFNN FFNN. . .Point-wise
FFNN

E. Loweimi 23/38



  

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

– Point-wise: applied to each position (zi) independently & identically. 
– Each layer has its own FFNN, shared inside layer.
 

– Dimensions:                            and                            (dff = 2048)
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Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

The representation dimension does not 
change across layers and sublayers.

E. Loweimi 23/38



  

Positional Coding
● Problem:

– Self-attention is agnostic to 
temporal or positional order
   

● Solution: Positional encoding
– Add it to embeddings

● Element-wise or concatenate

E. Loweimi 24/38
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Positional Coding
● Problem:

– Self-attention has no notion 
of temporal order 

● Solution: 
– Positional encoding

● Sinusoidal positional encoding
– Limited/stable range →[-1,1]

– Deals with any (unseen) length
E. Loweimi 24/38



  

Positional Coding
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Add and Norm
● Applied after each sublayer

– Add → residual connection
– Norm → Layer Normalisation
– Sublayer = Norm(x + DropOut {sublayer(x)})

  

● Note: here (similar to working w/ RNNs) batch 
size is small → unreliable stats for Batch Norm
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Add and Norm
● Applied after each sublayer

– Add → residual connection
– Norm → Layer Normalisation
– Sublayer = Norm(x + DropOut {sublayer(x)})

 

● Residual connection
– Stabilises the training
– Injects positional info into the model
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Residual Connection Role
● Residual connection injects positional info into model

– Diagonal alignment in Attention Encoder-Decoder

With residual 
connections

Without residual 
connections

E. Loweimi 25/38



  

Decoder
● 6 layers, each one has ... 

– Sublayer 1: Masked MHSL*
– Sublayer 2: Attention Encoder-Decoder
– Sublayer 3: Point-wise FFNN

 

● Each sublayer has Add & Norm

3

2

1

E. Loweimi 26/38
MHSA*: Multi-head Self-attention



  

Masked Multi-head Self-Attention
● Decoder generates one word at a time, left-to-right
● Masks preserve causality and autoregressive property 

of decoder, e.g. at t=3, wi for i>3 should be masked

E. Loweimi 27/38



  

Masked Multi-head Self-Attention
● Decoder generates one word at a time, left-to-right
● Masks preserve causality and autoregressive property 

of decoder, e.g. at t=3, wi for i>2 should be masked

W1 W2 W3 EOS

SOS W1 W2 Wm

Self-Attention

W3

. . . 

. . . 

.

.

.

Decoder

W4

. . .

. . .

Masked
E. Loweimi



  

Attention Encoder-Decoder

Encoder

Decoder6 layers

6 Layers
Encoder-Decoder attention between each 
decoder layer and the last layer of encoder
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Ingredients – Recap
● Encoder-Decoder structure
● Positional Embedding
● Multi-Head self-Attention
● Feed Forward NN (FFNN)
● Add & Norm

E. Loweimi 25/38



  

Training Setup
● TensorFlow → Tensor2Tensor library → github
● Optimisation

– Adam w/ learning rate warmup and exponential decay

● Regularisation
– Dropout → rate: 0.1

– Label smoothing → εls = 0.1
● Relax confidence on labels (C: #classes)

E. Loweimi 29/38

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py


  

State-of-the-art on WMT 2014

– BLEU score:   *  EN-DE: 28.4   * EN-FR: 41.8
– Data amount:  *  4.5M pairs         * 36M pairs 
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NMT → WMT 2014

– Measure: BLEU scores (higher is better) 
 

– Task/Data: Standard WMT newstest2014 
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WMT 2014

In WMT 2016 summary report, ”RNN” appeared 44 times.
In WMT 2018 report “RNN” appeared 9 and “Transformer” 63 times.
https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture07-fancy-rnn.pdf 
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Transformer Hyperparameters
● Data: devset EN-DE

– testnews2013

E. Loweimi 31/38



  

Transformer Hyperparameters

● Base vs big models
– dmodel → 512 vs 1024
– dff → 2048 vs 4096
– h→ 8 vs 16
– Pdrop→ 0.1 vs 0.3
– #param → 65 vs 213 M
– Bigger model is better
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Transformer Hyperparameters

● (A) → #heads (h)
– h=1 → BLEU 0.9 worse

– h=16 → BLEU 0.4 worse

– h should not be too large

E. Loweimi 32/38



  

Transformer Hyperparameters

● (B) → key size (dk)
– Reducing key size hurts

– More sophisticated 
compatibility function 
may be beneficial 
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Transformer Hyperparameters

● (C) → Model size

– Larger N helps

– Larger dmodel helps

– Larger dff helps

– Larger model is better

E. Loweimi 34/38



  

Transformer Hyperparameters

● (D) → Regularisation
– Dropout helps

– Label smoothing helps

– Rate should be adjusted
● 0.1 better than 0 or 0.2 
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Transformer Hyperparameters

● (E) → Positional Coding

– Learning embedding 
slightly worsen results

– Sinusoidal encoding is 
good enough
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Coreference Resolution 
(Winograd Schemas)

E. Loweimi 37/38

– Encoder self-attention visualisation at layer 5 (out of 6) ...
  * The animal didn’t cross the street because it was too tired.
  * The animal didn’t cross the street because it was too wide.



  

Ongoing Work ...
● BERT and OpenAI GPT

● Self-supervision and classification

● Multitask learning

● And many more ...

E. Loweimi 38/38



  

That’s it!
● Thanks for your ATTENTION!

– That’s all I needed ;-)
● Q/A

● Appendix

(A) CNN Encoder-Decoder



  

(A) CNN Encoder-Decoder
● Exp: ByteNet and ConvS2S

Decoder

Encoderwavenet
E. Loweimi App A/1



  

(A) CNN Encoder-Decoder
● CNN advantages

– Sparsity of connections → weight sharing
– Exploiting local dependencies → kernel size
– Translational invariance → pooling
– Easy to parallelise within layer

E. Loweimi App A/2



  

(A) CNN Encoder-Decoder
● Modelling long-range dependencies requires 

– Many layers → makes training harder

– Large kernel → computational cost, overfitting
 

● Path length between positions (in a sequence)
– Linear ↔ no dilation
– Log ↔ with dilation

E. Loweimi
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App A/3
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