

Attention is All You Need

Erfan Loweimi

Centre for Speech Technology Research (CSTR) The University of Edinburgh

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

NIPS 2017

Noam Shazeer* Google Brain noam@google.com

Niki Parmar*JakoGoogle ResearchGooglenikip@google.comusz@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com a:

Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Łukasz Kaiser*

Google Brain

Settings

Jakob Uszkoreit* Google Research usz@google.com

Q

Tools

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

lukaszkaiser@google.com Illia Polosukhin* ‡

NIPS 2017

illia.polosukhin@gmail.com

Attention is all you need

News

🖾 Images

About 2,010,000,000 results (0.52 seconds)

Attention Is All You Need

https://arxiv.org > cs -

Videos

9/11/2019

Books

: More

by A Vaswani - 2017 - Cited by 4209 - Related articles

12 Jun 2017 - Attention Is All You Need. The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism.

Outline

- Seq2Seq modelling via RNN Encoder-Decoder
- Attention Mechanism
- Self-Attention
- Transformer

Sequence-to-Sequence Modelling

• Many-to-Many mapping

Sequence-to-Sequence Modelling

• Many-to-Many mapping

$$p(Y_1, Y_2, \dots, Y_{T_y} | X_1, X_2, \dots, X_{T_x}) = p(Y_1^{T_y} | X_1^{T_x})$$

 \mathbf{X}_2

E. Loweimi

h1

 \mathbf{X}_1

Sequence-to-Sequence Modelling

- Many-to-Many mapping
- Some approximation & conditioning required!

$$p(Y_1, Y_2, ..., Y_{T_y} | X_1, X_2, ..., X_{T_x}) = p(Y_1^{T_y} | X_1^{T_x})$$

 \mathbf{X}_2

 \mathbf{X}_1

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

Kyunghyun Cho Bart van Merriënboer Caglar Gulcehre Université de Montréal

Dzmitry Bahdanau Jacobs University, Germany d.bahdanau@jacobs-university.de

Fethi BougaresHolger SchwenkYoshua BengioUniversité du Maine, FranceUniversité de Montréal, CIFAR Senior Fellowfirstname.lastname@lium.univ-lemans.frfind.me@on.the.web

 $p(Y_i|Y_1, \dots, Y_{i-1}, X_1^{T_x}) \approx g(Y_{i-1}, s_i, c)$

$$s_i = f(y_{i-1}, s_{i-1}, c)$$

Learning Phrase Representations using RNN Encoder ...

https://arxiv.org > cs 🔻

by K Cho - 2014 - Cited by 6907 - Related articles

9/10/2019

3 Jun 2014 - One **RNN** encodes a sequence of symbols into a fixed-length vector **representation**, and the other decodes the **representation** into another sequence of symbols. The **encoder** and **decoder** of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.

- Break the Many-to-Many into
 - Many-to-One
 - One-to-Many

 $p(Y_i|Y_1^{i-1}, X_1^{T_x}) \approx g(Y_{i-1}, s_i, c)$

- Break the Many-to-Many into
 - − Many-to-One ↔ Encoder
 - One-to-Many ↔ Decoder

 $p(Y_i|Y_1^{i-1}, X_1^{T_x}) \approx g(Y_{i-1}, s_i, c)$

- Break the Many-to-Many into
 - Many-to-**One** ↔ Encoder
 - One-to-Many ↔ Decoder
- "One" → Bottleneck
 - Context/thought vector
 - Fixed-length representation
 - Combines all info
 - Local/Global/Dependencies

 $p(Y_i|Y_1^{i-1}, X_1^{T_x}) \approx g(Y_{i-1}, s_i, c)$

RNN Encoder-Decoder Problems (1)

- Sequential computation is hard to parallelise
 - Not what modern HPCs excels at!

CPUs \rightarrow **Multiple Cores**

 $\begin{array}{l} \text{GPUs} \ \rightarrow \ \text{Hundreds to} \\ \text{Thousands Cores} \end{array}$

WNIVE RS

RNN Encoder-Decoder Problems (2)

- Information flow
 - Combination of all info in a single embedding
 - Info path between En and De states is long
 - Capturing long-term dependencies is tricky

Possible Solutions/Alternatives

- Attention mechanism
- Transformer
- CNNs for sequence modelling
 - Appendix (A)

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

$$p(Y_i|Y_1, \dots, Y_{i-1}, X_1^{T_x}) \approx g(Y_{i-1}, s_i, c_i)$$
$$s_i = f(y_{i-1}, s_{i-1}, c_i)$$

Neural Machine Translation by Jointly Learning to Align and ...

https://arxiv.org > cs 🔻

by D Bahdanau - 2014 - Cited by 9235 - Related articles

9/11/2019

Neural Machine Translation by Jointly Learning to Align and Translate. ... Unlike the traditional statistical **machine translation**, the **neural machine translation** aims at building a single **neural** network that can be **jointly** tuned to maximize the **translation** performance.

CST R

- Attention is a focus mechanism on taskimportant parts of input
- Input ← A set of {key:value} pairs, and queries
- **Output** → A weighted mean of values

• Attention is a focus mechanism on taskimportant parts of input

{key: value}

- Attention is a focus mechanism on taskimportant parts of input
- Input A set of key-value pairs, and queries
- **Output** \rightarrow A weighted mean of values
- Weights \rightarrow prop. to similarity of query & keys

- Query (Q)
 - Determines where focus should be steered
- Keys (K) and Values (V) pairs, {k:v}
 - Some prototypes
- In RNN En-De models
 - $Q \rightarrow$ Decoder states (S_{i-1})
 - K and V \rightarrow Encoder states (h_{1:Tx}) \rightarrow Identical HERE!

Attention Advantages

- Solves the info bottleneck issue of RNN En-De
- Shorten info path between $h_{1:Tx}$ and each s_i
 - Long-range dependencies better captured/modelled

Attention Advantages

- Solves the info bottleneck issue of RNN En-De
- Shorten info path between $h_{1:Tx}$ and each s_i
- Helps with gradient vanishing
- Jointly learns alignment & classification
 - Visualisation and understanding

Attention Advantages in NMT

Dealing with long-range dependencies

Visualisation of alignment

Attention Model

- Score (e_{ij})
- Alignment (α_{ij})
- Context (c_{ij})
 - aka glimpse (g_i)
- RNN Decoder

$$\alpha_{ij} = \operatorname{Attention}(\mathbf{s}_{i-1}, \mathbf{h}_j)$$
$$= \operatorname{softmax}(e_{ij})$$

$$\mathbf{c}_i = \alpha_i^T \ \mathbf{h}_j = \sum_j \alpha_{ij} \ \mathbf{h}_j$$

 $\mathbf{y}_i \sim \text{Label-Distribution}(\mathbf{y}_{i-1}, \mathbf{s}_i, \mathbf{c}_i)$

Alignment model → Compute Score

- Dot-product
 - Basic
 - Linear projection

 $e_{ij} = \mathbf{s}_i^T \mathbf{h}_j$

$$e_{ij} = \mathbf{s}_i^T W \mathbf{h}_j$$

- Dot-product
 - Basic
 - Linear projection
- Additive
 - Content
 - Location

$$e_{ij} = v^T \tanh(W\mathbf{s}_{i-1} + V\mathbf{h}_j + \mathbf{b})$$

$$e_{ij} = v^T \tanh(W\mathbf{s}_{i-1} + V\mathbf{h}_j + U f_{ij} + \mathbf{b})$$

E. Loweimi α_{i-1} 10/38

$$e_{ij} = \mathbf{s}_i^T \mathbf{h}_j$$

$$e_{ij} = \mathbf{s}_i^T W \mathbf{h}_j$$

Sharpening the Focus / Attention

- Use inverse temperature, β,
 - $\beta > 1 =>$ sharpening the pdf
 - $\beta < 1 \Rightarrow$ *smoothing* the pdf

$$a_{ij} = \frac{\exp(\beta e_{ij})}{\sum_{j'} \exp(\beta e_{ij'})}$$

- Top-k
 - Keep top k values of $e_i \rightarrow$ Set the rest to zero \rightarrow Normalise
- Caveat: requires computing all e_{ij}s
 - Computational complexity $\rightarrow O(T_xT_y)$
 - Solution: Windowed attention

Sharpening the Focus / Attention

- Windowed Attention
 - Window length: $2w \rightarrow 2w \ll L$
 - Window centre: $p_i \rightarrow \text{median of } \alpha_{i-1}$
 - α_{i-1} shortlists the encoder states (h_j)
 - Compute attention only on $\tilde{h} = (h_{p_i-w}, ..., h_{p_i+w-1})$
- Caveats:
 - Not useful for short utterances, too sharp
 - **Solution** \rightarrow *Smoothing* \rightarrow Replace *exp* with *sigmoid* in *softmax*
 - Window length and location are suboptimal
 - **Solution** \rightarrow Fully-trainable Windowed Attention

WINDOWED ATTENTION MECHANISMS FOR SPEECH RECOGNITION

Shucong Zhang, Erfan Loweimi, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK

What if **X** sequence is very long & \mathbf{y}_i is only correlated with a small part of **X** ...

What if **X** sequence is very long & \mathbf{y}_i is only correlated with a small part of X ...

c_i contains noisy info from irrelevant $h_i \rightarrow$ Suboptimal attention

 \mathbf{y}_{T_u}

11/38

$$L_{i} = L_{max} \sigma(MLP(\mathbf{s}_{i}))$$

$$sh_{i} = SH_{max} \sigma(MLP(\mathbf{s}_{i}))$$

$$m_{i} = m_{i-1} + sh_{i}$$

$$L_{ij} = \begin{cases} \exp(-\frac{(j-m_{i})^{2}}{2(D_{iL}/2)^{2}}, j \in (m_{i} - D_{iL}, m_{i})) \\ \exp(-\frac{(j-m_{i})^{2}}{2(D_{iR}/2)^{2}}, j \in (m_{i}, m_{i} - D_{iR})) \end{cases}$$

$$\alpha_{ij} = \frac{\exp(e_{ij}) \ l_{ij}}{\sum_{m_{i} - D_{iL}}^{m_{i} + D_{iR}} \exp(e_{ik}) \ l_{ik}}$$

Fully-trainable \rightarrow BOTH window length and window shift are learned.

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019

11/38

$$L_{i} = L_{max} \sigma(MLP(\mathbf{s}_{i}))$$

$$sh_{i} = SH_{max} \sigma(MLP(\mathbf{s}_{i}))$$

$$m_{i} = m_{i-1} + sh_{i}$$

$$l_{ij} = \begin{cases} \exp(-\frac{(j-m_{i})^{2}}{2(D_{iL}/2)^{2}}, j \in (m_{i} - D_{iL}, m_{i}) \\ \exp(-\frac{(j-m_{i})^{2}}{2(D_{iR}/2)^{2}}, j \in (m_{i}, m_{i} - D_{iR}) \end{cases}$$

$$\alpha_{ij} = \frac{\exp(e_{ij}) l_{ij}}{\sum_{m_{i} - D_{iL}}^{m_{i} + D_{iR}} \exp(e_{ik}) l_{ik}}$$
Windowed Attempts

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019

E. Loweimi

11/38

Self-Attention

- An attention within a layer (representation)
 - Encoder ↔ Classic attention ↔ Decoder

Self-Attention

- An attention within a layer (representation)
- Each weight is prop. to similarity of two vertices

E. Loweimi

Self-Attention

- An attention within a layer (representation)
- Each weight is prop. to similarity of two vertices

$$\mathbf{z}_{i} = \sum_{j} w_{ij} \mathbf{x}_{j}$$
$$\begin{cases} w_{ij} = \text{similarity}(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ w_{ij} \ge 0, \quad \sum_{j} w_{ij} = 1 \end{cases}$$

E. Loweimi

Self-Attention Advantages

- Constant path length between positions, O(1)
 - Direct interaction, no locality bias
- Long-range dependencies are captured well
- \checkmark Multiplicative interaction \rightarrow some kind of gating
- Permutation invariant
- Trivial to parallelise

Convolution vs Self-Attention

- CNN
 - Linear Time Invariant
 - Suboptimal filter replication
 - Seq. modelling requires depth

- Self-Attention
 - Linear(?) Time Variant
 - One filter per node
 - Direct interaction for all

Self-Attention Disadvantageous

- Globally, sequentiality is lost
 - has no notion of temporal order!
 - Permutation invariant!
- Locally, temporal resolution is lost
 - Owing to attention-weighted averaging

Self-Attention Disadvantageous

- Globally, sequentiality is lost
 - has no notion of temporal order!
 - Permutation invariant!
- Locally, temporal resolution is lost
 - Owing to attention-weighted averaging
- **Solution**: Positional Encoding

Computational Complexity

- Self-attention \rightarrow O(n²d)
 - Quadratic in sequence length (n)
 - Linear in representation dimension (d)
- RNN \rightarrow O(nd²)
 - Linear in seq. length; Quadratic in repr. dim

Computational Complexity

- Self-attention \rightarrow O(n²d)
 - Quadratic in sequence length (n)
 - Linear in representation dimension (d)
- RNN \rightarrow O(nd²)
 - Linear in seq. length; Quadratic in repr. dim
- If n < d \rightarrow Self-attention is more economic, e.g. NMT
- If n > d \rightarrow Self-attention is parallelisable, e.g. ASR

Transformers

Architecture

Output Probabilities

Softmax

Ingredients

Ingredients

E. Loweimi

- Encoder-Decoder structure
- Positional Embedding
- Multi-Head self-Attention
- Feed Forward NN (FFNN)
- Add & Norm

Encoder

- 6 Layers, each one has ...
 - Sublayer 1: Multi-head Self-attention
 - Sublayer 2: (Point-wise) FFNN

- Add & Norm after each sublayer
 - Sublayer = Norm(x+sublayer(x))

 Process multiple types/streams of info or subtasks independently

- Process multiple types/streams of info or subtasks *independently*, e.g.
 - Who?
 - Did what?
 - To whom?

- Process multiple types/streams of info or subtasks *independently*, e.g.
 - Who?
 - Did what?
 - To whom?

Each subtask and/or piece of info requires a different solution and attention.

• Process multiple types of info

Head 1: Who?

Head 2: Did what?

Head 3: To whom?

• Process multiple types of info

Head 1: Who?

Head 2: Did what?

Head 3: To whom?

- Two heads form encoder self-attention at layer 5 (out of 6).
- Heads learn to perform different tasks.

Multi-head self-Attention

Single-head self-Attention

E. Loweimi

Single-head self-Attention

- Given: Query, Key and Value ({k:v})
- Output: attention-weighted mean of Values
- Weights prop. to similarity of \mathbf{K} & \mathbf{Q}
- Similarity: scaled-dot product
 - Scaled \rightarrow to control magnitude@high dim

$$\text{Attention} = \text{softmax}(\frac{QK^T}{\sqrt{d_k}}) \ V$$

Generate Q, K, V via Linear transformation

• Embedding \rightarrow Linear transformation

Multi-head self-Attention

$$\mathbf{y}_i^l = FFNN(\mathbf{z}_i^l) = ReLU(\mathbf{z}_i^l W_1^l + b_1^l)W_2^l + b_2^l$$

Point-wise
FFNNFFNNFFNNFFNNfffffffffff z_1 z_2 z_3 \dots

E. Loweimi

$$\mathbf{y}_i^l = FFNN(\mathbf{z}_i^l) = ReLU(\mathbf{z}_i^l W_1^l + b_1^l)W_2^l + b_2^l$$

- **Point-wise**: applied to each position (z_i) independently & identically. - Each layer has its own FFNN, shared inside layer.

- Dimensions: $W_1^l \in \mathbb{R}^{d_{model} \times d_{ff}}$ and $W_2^l \in \mathbb{R}^{d_{ff} \times d_{model}}$ (d_{ff} = 2048)

$$\mathbf{y}_i^l = FFNN(\mathbf{z}_i^l) = ReLU(\mathbf{z}_i^l W_1^l + b_1^l)W_2^l + b_2^l$$

The representation dimension does not change across layers and sublayers.

 $\mathbf{X} \in \mathbb{R}^{n imes d_{model}}$

$$\mathbf{Z} \in \mathbb{R}^{n imes d_{model}}$$

$$\mathbf{Y} \in \mathbb{R}^{n imes d_{model}}$$

Positional Coding

- Problem:
 - Self-attention is agnostic to temporal or positional order
- Solution: Positional encoding
 - Add it to embeddings
 - Element-wise or concatenate

Positional Coding

- Problem:
 - Self-attention has no notion of temporal order
- Solution:
 - Positional encoding
- Sinusoidal positional encoding
 - Limited/stable range \rightarrow [-1,1]
 - Deals with any (unseen) length

$$PE_{(pos,2d)} = \sin\left(\frac{pos}{10^{\frac{8d}{D}}}\right)$$
$$PE_{(pos,2d+1)} = \cos\left(\frac{pos}{10^{\frac{8d}{D}}}\right)$$
$$0 \le pos < n$$
$$d = 0.1 \quad D/2$$

Positional Coding

embedding

0.6 Ucoding

0.6 0.4

Add and Norm

- Applied after each sublayer
 - Add \rightarrow residual connection
 - Norm → Layer Normalisation
 - Sublayer = Norm(x + DropOut {sublayer(x)})

• Note: here (similar to working w/ RNNs) batch size is small \rightarrow unreliable stats for Batch Norm

Add and Norm

- Applied after each sublayer
 - Add \rightarrow residual connection
 - Norm \rightarrow Layer Normalisation
 - Sublayer = $Norm(x + DropOut {sublayer(x)})$
- Residual connection
 - Stabilises the training
 - Injects positional info into the model

Residual Connection Role

- Residual connection injects positional info into model
 - *Diagonal alignment* in Attention Encoder-Decoder

With residual connections

E. Loweimi

Decoder

- 6 layers, each one has ...
 - Sublayer 1: Masked MHSL*
 - Sublayer 2: Attention Encoder-Decoder
 - Sublayer 3: Point-wise FFNN
- Each sublayer has Add & Norm

(shifted righ 26/38

E. Loweimi

Masked Multi-head Self-Attention

- Decoder generates one word at a time, left-to-right
- Masks preserve causality and autoregressive property of decoder, e.g. at t=3, w_i for i>3 should be masked

UNIVER CONFORMERS

Masked Multi-head Self-Attention

- Decoder generates one word at a time, left-to-right
- Masks preserve causality and autoregressive property of decoder, e.g. at t=3, wi for i>2 should be masked

Attention Encoder-Decoder

Ingredients – Recap

E. Loweimi

- Encoder-Decoder structure
- Positional Embedding
- Multi-Head self-Attention
- Feed Forward NN (FFNN)
- Add & Norm

Training Setup

- TensorFlow \rightarrow Tensor2Tensor library \rightarrow github
- Optimisation
 - Adam w/ learning rate warmup and exponential decay
- Regularisation
 - Dropout \rightarrow rate: 0.1
 - Label smoothing $\rightarrow \epsilon_{ls} = 0.1$

E. Loweimi

29/38

Madal	BL	EU	Training Co	ost (FLOPs)
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet 18	23.75			
Deep-Att + PosUnk 39		39.2		$1.0\cdot10^{20}$
GNMT + RL 38	24.6	39.92	$2.3\cdot10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 9	25.16	40.46	$9.6\cdot10^{18}$	$1.5 \cdot 10^{20}$
MoE 32	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble 39		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble 38	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	3.3 ·	10^{18}
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}

BLEU score: * EN-DE: 28.4 * EN-FR: 41.8Data amount: * 4.5M pairs * 36M pairs

NMT \rightarrow WMT 2014

English German Translation quality

– Measure: BLEU scores (higher is better)

– Task/Data: Standard WMT newstest2014

BLEU

WMT 2014

In WMT 2016 summary report, "RNN" appeared 44 times. In WMT 2018 report "RNN" appeared 9 and "Transformer" 63 times. https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture07-fancy-rnn.pdf

E. Loweimi

- Data: devset EN-DE
 - testnews2013

	N	d_{model}	d_{ff}	h	d_k	d_v	P_{drop}	ϵ_{ls}	train	PPL	BLEU	params
		model							steps	(dev)	(dev)	×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(Л)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(D)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

- Base vs big models
 - $d_{model} \rightarrow 512 \text{ vs } 1024$
 - d_{ff} → 2048 vs 4096
 - h → 8 vs 16
 - $P_{drop} \rightarrow 0.1 \text{ vs } 0.3$
 - #param \rightarrow 65 vs 213 M
 - Bigger model is better

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(\mathbf{A})				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(Б)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

- (A) \rightarrow #heads (h)
 - $h=1 \rightarrow BLEU 0.9$ worse
 - $h=16 \rightarrow BLEU 0.4$ worse
 - *h* should not be too large

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(В)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling ins	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

• (B) \rightarrow key size (d_k)

- Reducing key size hurts
- More sophisticated compatibility function may be beneficial

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(\mathbf{A})				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(В)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling ins	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

- (C) → Model size
 - Larger N helps
 - Larger *d*_{model} helps
 - Larger d_{ff} helps
 - Larger model is better

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(Λ)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(В)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
		_	1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

- (D) \rightarrow Regularisation
 - Dropout helps
 - Label smoothing helps
 - Rate should be adjusted
 - 0.1 better than 0 or 0.2

	N	d_{model}	d_{ff}	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(Б)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling ins	stead o	f sinusoi	ids		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

• (E) → Positional Coding

- Learning embedding slightly worsen results
- Sinusoidal encoding is good enough

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(A)				4	128	128				5.00	25.5	
(\mathbf{A})				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16	25.1	58
(Б)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(\mathbf{D})							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbeda	ling ins	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Coreference Resolution (Winograd Schemas)

Encoder self-attention visualisation at layer 5 (out of 6) ...
* The *animal* didn't cross the street because *it* was too tired.
* The *animal* didn't cross the street because *it* was too wide.

Ongoing Work ...

- BERT and OpenAI GPT
- Self-supervision and classification
- Multitask learning
- And many more ...

That's it!

- Thanks for your ATTENTION!
 - That's all I needed ;-)
- Q/A

• Appendix

(A) CNN Encoder-Decoder

(A) CNN Encoder-Decoder

Decoder

• Exp: ByteNet and ConvS2S

E. Loweimi

App A/1

(A) CNN Encoder-Decoder

- CNN advantages
 - Sparsity of connections \rightarrow weight sharing
 - Exploiting local dependencies \rightarrow kernel size
 - Translational invariance \rightarrow pooling
 - Easy to parallelise within layer

(A) CNN Encoder-Decoder

- Modelling long-range dependencies requires
 - Many layers \rightarrow makes training harder
 - Large kernel \rightarrow computational cost, overfitting
- Path length between positions (in a sequence)
 - Linear \leftrightarrow no dilation
 - Log \leftrightarrow with dilation

E. Loweimi