

Erfan Loweimi

Centre for Speech Technology Research (CSTR)
The University of Edinburgh

Attention is All You Need

NIPS 2017

Equal contribution

NIPS 2017

Equal contribution
9/11/2019

Outline
● Seq2Seq modelling via RNN Encoder-Decoder
● Attention Mechanism
● Self-Attention

● Transformer

E. Loweimi 1/38

Sequence-to-Sequence Modelling

● Many-to-Many mapping

E. Loweimi 2/38

Sequence-to-Sequence Modelling

● Many-to-Many mapping

h1 h2 hTx. . .

s1 s2 sTy-1. . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

Encoder

Decoder

. . .

E. Loweimi 2/38

Sequence-to-Sequence Modelling

● Many-to-Many mapping

● Some approximation &
conditioning required!

h1 h2 hTx. . .

s1 s2 sTy-1. . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

Encoder

Decoder

. . .

E. Loweimi 2/38

RNN Encoder-Decoder

9/10/2019

E. Loweimi 3/38

RNN Encoder-Decoder
● Break the Many-to-Many into

– Many-to-One

– One-to-Many

h1 h2 hTx. . .

s1 s2 . . . sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

. . .

E. Loweimi 3/38

RNN Encoder-Decoder
● Break the Many-to-Many into

– Many-to-One ↔ Encoder

– One-to-Many ↔ Decoder

h1 h2 hTx. . .

s1 s2 . . . sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

. . .

E. Loweimi 3/38

Encoder Decoder

RNN Encoder-Decoder
● Break the Many-to-Many into

– Many-to-One ↔ Encoder

– One-to-Many ↔ Decoder

● “One” → Bottleneck

– Context/thought vector

– Fixed-length representation

– Combines all info
● Local/Global/Dependencies

h1 h2 hTx. . .

s1 s2 . . . sTy

.

.

.

.

.

.

.

.

.

.

.

.

s3

Encoder

Decoder

. . .
Bottleneck

E. Loweimi 3/38

Encoder

RNN Encoder-Decoder Problems (1)

● Sequential computation is hard to parallelise
– Not what modern HPCs excels at!

E. Loweimi 4/38

CPUs → Multiple Cores
GPUs → Hundreds to
Thousands Cores

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

RNN Encoder-Decoder Problems (2)

● Information flow
– Combination of all info in a single embedding
– Info path between En and De states is long
– Capturing long-term dependencies is tricky

E. Loweimi 4/38

hj-1 hj hTx. . . hTx-1

s1 s2 si-1 si
.

h1 h2 . . .

sTy

Possible Solutions/Alternatives
● Attention mechanism
● Transformer
● CNNs for sequence modelling

– Appendix (A)

E. Loweimi 5/38

Attention Mechanism

E. Loweimi 6/38

9/11/2019

Attention Mechanism

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

Attention

Attention
Mechanism

si-1

h1 h2 hTx

. . .

.

.

.

ci

E. Loweimi 6/38

Attention Mechanism
● Attention is a focus mechanism on task-

important parts of input

● Input ← A set of {key:value} pairs, and queries

● Output → A weighted mean of values

E. Loweimi 7/38

Attention Mechanism
● Attention is a focus mechanism on task-

important parts of input

E. Loweimi 7/38

Attention
Mechanism

{k1: v1}

{k2: v2}

{kN: vN}

.

.

.

{key: value}

.

.

.

qi
.

+.
.
.

wi1

wi2

wiN

Attention Mechanism
● Attention is a focus mechanism on task-

important parts of input
● Input ← A set of key-value pairs, and queries
● Output → A weighted mean of values
● Weights→prop. to similarity of query & keys

E. Loweimi 7/38

Attention Mechanism
● Query (Q)

– Determines where focus should be steered

● Keys (K) and Values (V) pairs, {k:v}
– Some prototypes

● In RNN En-De models
– Q → Decoder states (si-1)

– K and V→Encoder states (h1:Tx) →Identical HERE!
E. Loweimi 7/38

Attention Advantages
● Solves the info bottleneck issue of RNN En-De
● Shorten info path between h1:Tx and each si

– Long-range dependencies better captured/modelled

E. Loweimi 8/38

h1 h2 hTx. . . hTx-1

s1 s2 si-1 si
.

Attention Advantages
● Solves the info bottleneck issue of RNN En-De
● Shorten info path between h1:Tx and each si
● Helps with gradient vanishing
● Jointly learns alignment & classification

– Visualisation and understanding

E. Loweimi 8/38

Attention Advantages in NMT

E. Loweimi 8/38

Dealing with long-range dependencies Visualisation of alignment

Attention Model

● Score (eij)

● Alignment (αij)

● Context (cij)
– aka glimpse (gi)

●

● RNN Decoder

E. Loweimi 9/38

Alignment model → Compute Score

● Dot-product
– Basic
– Linear projection

E. Loweimi 10/38

Alignment model → Compute Score

● Dot-product
– Basic
– Linear projection

● Additive
– Content
– Location

E. Loweimi 10/38

Sharpening the Focus / Attention

E. Loweimi 11/38

● Use inverse temperature, β,
– β > 1 => sharpening the pdf

– β < 1 => smoothing the pdf

● Top-k
– Keep top k values of ei → Set the rest to zero → Normalise

● Caveat: requires computing all eij s
– Computational complexity → O(TxTy)

– Solution: Windowed attention

Sharpening the Focus / Attention

E. Loweimi 11/38

● Windowed Attention

– Window length: 2w → 2w << L

– Window centre: pi → median of αi-1

● αi-1 shortlists the encoder states (hj)

– Compute attention only on

● Caveats:
– Not useful for short utterances, too sharp

● Solution → Smoothing → Replace exp with sigmoid in softmax

– Window length and location are suboptimal
● Solution → Fully-trainable Windowed Attention

(Fully-Trainable) Windowed Attention

E. Loweimi 11/38

(Fully-Trainable) Windowed Attention

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

ci

E. Loweimi 11/38

(Fully-Trainable) Windowed Attention

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

ci

What if X sequence is very
long & yi is only correlated
with a small part of X ...

E. Loweimi 11/38

(Fully-Trainable) Windowed Attention

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

ci

What if X sequence is very
long & yi is only correlated
with a small part of X ...

E. Loweimi 11/38

ci contains noisy info from
irrelevant hj→Suboptimal attention

(Fully-Trainable) Windowed Attention

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

ci

hj

.

.

.

. . . hj-1

.

.

.

hj+1

.

.

.

. . .

hj-2

.

.

.

hj+2

.

.

.

E. Loweimi 11/38

Many αij are zero.
Why/Can/should we learn
them?!

(Fully-Trainable) Windowed Attention

h1 h2 hTx. . .

s1 s2 . . .

hTx-1

sTy

.

.

.

.

.

.

.

.

.

.

.

.

Encoder

Decoder

. . .

si-1 si
. . .

.

.

.

. . .

Σ

.

.

.

.

.

.

ci

hj

.

.

.

. . . hj-1

.

.

.

hj+1

.

.

.

. . .

hj-2

.

.

.

hj+2

.

.

.

E. Loweimi 11/38

Impose sparsity by windowing ...

(Fully-Trainable) Windowed Attention

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019

E. Loweimi 11/38

Fully-trainable → BOTH window
length and window shift are learned.

(Fully-Trainable) Windowed Attention

Windowed Attention Mechanism for Speech Recognition, Zhang et al, ICASSP 2019

Li

Li+1

Time
x x
mi mi+1

shi

E. Loweimi 11/38

Fully-trainable

Self-Attention
● An attention within a layer (representation)

– Encoder ↔ Classic attention ↔ Decoder

. . .

. . .

. . .

. . .

E. Loweimi 12/38

Decoder

Encoder

Attention

Self-Attention
● An attention within a layer (representation)
● Each weight is prop. to similarity of two vertices

. . .

. . .

. . .

. . .

E. Loweimi 12/38

Self-Attention
● An attention within a layer (representation)
● Each weight is prop. to similarity of two vertices

. . .

. . .

. . .

. . .

E. Loweimi 12/38

Self-Attention Advantages
✔ Constant path length between positions, O(1)

– Direct interaction, no locality bias

✔ Long-range dependencies are captured well
✔ Multiplicative interaction → some kind of gating

✔ Permutation invariant
✔ Trivial to parallelise

. . .

. . .

. . .

. . .

E. Loweimi 13/38

Convolution vs Self-Attention

● CNN
– Linear Time Invariant

– Suboptimal filter replication

– Seq. modelling requires depth

● Self-Attention
– Linear(?) Time Variant

– One filter per node

– Direct interaction for all

E. Loweimi 14/38

Self-Attention Disadvantageous
● Globally, sequentiality is lost

– has no notion of temporal order!
– Permutation invariant!

● Locally, temporal resolution is lost
– Owing to attention-weighted averaging

E. Loweimi 15/38

Self-Attention Disadvantageous
● Globally, sequentiality is lost

– has no notion of temporal order!
– Permutation invariant!

● Locally, temporal resolution is lost
– Owing to attention-weighted averaging

● Solution: Positional Encoding

E. Loweimi 15/38

Computational Complexity

● Self-attention → O(n2d)
– Quadratic in sequence length (n)
– Linear in representation dimension (d)

● RNN → O(nd2)
– Linear in seq. length; Quadratic in repr. dim

E. Loweimi 16/38

Computational Complexity
● Self-attention → O(n2d)

– Quadratic in sequence length (n)
– Linear in representation dimension (d)

● RNN → O(nd2)
– Linear in seq. length; Quadratic in repr. dim

● If n < d → Self-attention is more economic, e.g. NMT
● If n > d → Self-attention is parallelisable, e.g. ASR

E. Loweimi 16/38

Transformers

Architecture

Primary
winding

Secondary
winding

Ingredients

Ingredients
● Encoder-Decoder structure
● Positional Embedding
● Multi-Head self-Attention
● Feed Forward NN (FFNN)
● Add & Norm

E. Loweimi 17/38

Encoder

D
ec

o
d

er

Encoder
● 6 Layers, each one has ...

– Sublayer 1: Multi-head Self-attention
– Sublayer 2: (Point-wise) FFNN

● Add & Norm after each sublayer
– Sublayer = Norm(x+sublayer(x))

1

2

E. Loweimi 18/38

Multi-head Self-attention – Intuition
● Process multiple types/streams of info or

subtasks independently

E. Loweimi 19/38

Multi-head Self-attention – Intuition
● Process multiple types/streams of info or

subtasks independently, e.g.
– Who?
– Did what?
– To whom?

E. Loweimi 19/38

Multi-head Self-attention – Intuition
● Process multiple types/streams of info or

subtasks independently, e.g.
– Who?
– Did what?
– To whom?

Each subtask and/or piece of info requires
a different solution and attention.

E. Loweimi 19/38

Multi-head Self-attention – Intuition
● Process multiple types of info

Head 1: Who? Head 2: Did what? Head 3: To whom?

E. Loweimi 19/38

Multi-head Self-attention – Intuition
● Process multiple types of info Parallelisable

E. Loweimi 19/38

Head 1: Who? Head 2: Did what? Head 3: To whom?

Multi-head Self-attention – Intuition

 – Two heads form encoder self-attention at layer 5 (out of 6).

 – Heads learn to perform different tasks.

E. Loweimi 19/38

Multi-head self-Attention

Linearly combines heads’ outputs.

Value Key Query

E. Loweimi 20/38

Single-head self-Attention

E. Loweimi 20/38

Single-head self-Attention
● Given: Query, Key and Value ({k:v})

● Output: attention-weighted mean of Values

● Weights prop. to similarity of K & Q
● Similarity: scaled-dot product

– Scaled → to control magnitude@high dim

E. Loweimi 20/38

Generate Q, K, V via Linear transformation

● Embedding → Linear transformation

...

...

...

.

.

.

x1

x2

xn

dmodel = 512

WK

WQ

WV

...

...

...

.

.

.

dk

...

...

...

.

.

.

v1

v2

vn

dv

...

...

...

.

.

.

dq
q1

q2

qn

k1

k2

kn

Q=XWQ

K=XWk

V=XWv

Note dq = dk

Not to be confused with similar
Wi belongs to the heads.

E. Loweimi 21/38

Multi-head self-Attention

Linear projection to space where dot
product is a better proxy for similarity. Value Key Query

– dq = dk = dv = dmodel / h
– dmodel = 512, h = 8

E. Loweimi 22/38

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

E. Loweimi 23/38

Affine Trans 1
(W1, b1)

ReLU
Affine Trans 2

(W2, b2)

zi

Point-wise FFNN

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

. . .

FFNN FFNN FFNN FFNN. . .Point-wise
FFNN

E. Loweimi 23/38

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

– Point-wise: applied to each position (zi) independently & identically.
– Each layer has its own FFNN, shared inside layer.

– Dimensions: and (dff = 2048)

E. Loweimi 23/38

Point-wise FFNN

Self-Attention Add & Norm
Point-wise

FFNN
Add & Norm

The representation dimension does not
change across layers and sublayers.

E. Loweimi 23/38

Positional Coding
● Problem:

– Self-attention is agnostic to
temporal or positional order

● Solution: Positional encoding
– Add it to embeddings

● Element-wise or concatenate

E. Loweimi 24/38

ed

e2

e1

e3

.

.

.

pd

p2

p1

p3

.

.

.

embedding

+

Positional
encoding

Positional Coding
● Problem:

– Self-attention has no notion
of temporal order

● Solution:
– Positional encoding

● Sinusoidal positional encoding
– Limited/stable range →[-1,1]

– Deals with any (unseen) length
E. Loweimi 24/38

Positional Coding

ed

e2

e1

e3

.

.

.

pd

p2

p1

p3

.

.

.

embedding

+

pos = 20

E. Loweimi 24/38

Add and Norm
● Applied after each sublayer

– Add → residual connection
– Norm → Layer Normalisation
– Sublayer = Norm(x + DropOut {sublayer(x)})

● Note: here (similar to working w/ RNNs) batch
size is small → unreliable stats for Batch Norm

E. Loweimi 25/38

Add and Norm
● Applied after each sublayer

– Add → residual connection
– Norm → Layer Normalisation
– Sublayer = Norm(x + DropOut {sublayer(x)})

● Residual connection
– Stabilises the training
– Injects positional info into the model

E. Loweimi 25/38

Residual Connection Role
● Residual connection injects positional info into model

– Diagonal alignment in Attention Encoder-Decoder

With residual
connections

Without residual
connections

E. Loweimi 25/38

Decoder
● 6 layers, each one has ...

– Sublayer 1: Masked MHSL*
– Sublayer 2: Attention Encoder-Decoder
– Sublayer 3: Point-wise FFNN

● Each sublayer has Add & Norm

3

2

1

E. Loweimi 26/38
MHSA*: Multi-head Self-attention

Masked Multi-head Self-Attention
● Decoder generates one word at a time, left-to-right
● Masks preserve causality and autoregressive property

of decoder, e.g. at t=3, wi for i>3 should be masked

E. Loweimi 27/38

Masked Multi-head Self-Attention
● Decoder generates one word at a time, left-to-right
● Masks preserve causality and autoregressive property

of decoder, e.g. at t=3, wi for i>2 should be masked

W1 W2 W3 EOS

SOS W1 W2 Wm

Self-Attention

W3

. . .

. . .

.

.

.

Decoder

W4

. . .

. . .

Masked
E. Loweimi

Attention Encoder-Decoder

Encoder

Decoder6 layers

6 Layers
Encoder-Decoder attention between each
decoder layer and the last layer of encoder

E. Loweimi 28/38

Ingredients – Recap
● Encoder-Decoder structure
● Positional Embedding
● Multi-Head self-Attention
● Feed Forward NN (FFNN)
● Add & Norm

E. Loweimi 25/38

Training Setup
● TensorFlow → Tensor2Tensor library → github
● Optimisation

– Adam w/ learning rate warmup and exponential decay

● Regularisation
– Dropout → rate: 0.1

– Label smoothing → εls = 0.1
● Relax confidence on labels (C: #classes)

E. Loweimi 29/38

https://github.com/tensorflow/tensor2tensor
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

State-of-the-art on WMT 2014

– BLEU score: * EN-DE: 28.4 * EN-FR: 41.8
– Data amount: * 4.5M pairs * 36M pairs

E. Loweimi 30/38

NMT → WMT 2014

– Measure: BLEU scores (higher is better)

– Task/Data: Standard WMT newstest2014

E. Loweimi 30/38

WMT 2014

In WMT 2016 summary report, ”RNN” appeared 44 times.
In WMT 2018 report “RNN” appeared 9 and “Transformer” 63 times.
https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture07-fancy-rnn.pdf

E. Loweimi 30/38

Transformer Hyperparameters
● Data: devset EN-DE

– testnews2013

E. Loweimi 31/38

Transformer Hyperparameters

● Base vs big models
– dmodel → 512 vs 1024
– dff → 2048 vs 4096
– h→ 8 vs 16
– Pdrop→ 0.1 vs 0.3
– #param → 65 vs 213 M
– Bigger model is better

E. Loweimi 31/38

Transformer Hyperparameters

● (A) → #heads (h)
– h=1 → BLEU 0.9 worse

– h=16 → BLEU 0.4 worse

– h should not be too large

E. Loweimi 32/38

Transformer Hyperparameters

● (B) → key size (dk)
– Reducing key size hurts

– More sophisticated
compatibility function
may be beneficial

E. Loweimi 33/38

Transformer Hyperparameters

● (C) → Model size

– Larger N helps

– Larger dmodel helps

– Larger dff helps

– Larger model is better

E. Loweimi 34/38

Transformer Hyperparameters

● (D) → Regularisation
– Dropout helps

– Label smoothing helps

– Rate should be adjusted
● 0.1 better than 0 or 0.2

E. Loweimi 35/38

Transformer Hyperparameters

● (E) → Positional Coding

– Learning embedding
slightly worsen results

– Sinusoidal encoding is
good enough

E. Loweimi 36/38

Coreference Resolution
(Winograd Schemas)

E. Loweimi 37/38

– Encoder self-attention visualisation at layer 5 (out of 6) ...
 * The animal didn’t cross the street because it was too tired.
 * The animal didn’t cross the street because it was too wide.

Ongoing Work ...
● BERT and OpenAI GPT

● Self-supervision and classification

● Multitask learning

● And many more ...

E. Loweimi 38/38

That’s it!
● Thanks for your ATTENTION!

– That’s all I needed ;-)
● Q/A

● Appendix

(A) CNN Encoder-Decoder

(A) CNN Encoder-Decoder
● Exp: ByteNet and ConvS2S

Decoder

Encoderwavenet
E. Loweimi App A/1

(A) CNN Encoder-Decoder
● CNN advantages

– Sparsity of connections → weight sharing
– Exploiting local dependencies → kernel size
– Translational invariance → pooling
– Easy to parallelise within layer

E. Loweimi App A/2

(A) CNN Encoder-Decoder
● Modelling long-range dependencies requires

– Many layers → makes training harder

– Large kernel → computational cost, overfitting

● Path length between positions (in a sequence)
– Linear ↔ no dilation
– Log ↔ with dilation

E. Loweimi

1

2

3
4

App A/3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

