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Outline
● Time-Frequency Analysis (TFA) without Fourier
● Parametric Kernelised CNNs

– SincNet, Sinc2Net, GammaNet, GaussNet, Complex Gabor CNN

● E2E Raw waveform models for ASR
– Time-Domain Filterbank
– E2E-SincNet

● Adaptation of SincNet acoustic models
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TFA by Time-domain Processing
● Requires impulse response, h(t), of fbank filters

– Known for Gammatone filters

ICASSP 2007
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MFCC vs Gammatone Feature
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TFA in MFCC & Gammatone Pipelines
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SincNet

SLT 2018

NIPS@IRASL 
2018
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SincNet – Definition

● Convolutional layer with ideal bandpass filters, takes 
raw waveform as input 
– Impulse response ← Sinc

E. Loweimi
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layer

  

Ideal Filters
DNN

Acoustic Model via SincNet

Posterior
probabilities
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SincNet – Filters

Loweimi et al

Impulse response Frequency response
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SincNet – Parameters
● Parameter Set (Θ) → cut-off frequencies: f1 & f2

Learned via
Backprop
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SincNet – Practical Considerations (1)

● Sinc length is finite
– Rectangular windowing

● Ripples in pass/stop bands
 

– Solution: 
● Apply a tapered window
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SincNet – Practical Considerations (2)

● Monitor the cut-off frequencies value
– Both should be positive and  f2 >  f1 

– f2 < Nyquist Rate
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SincNet – Practical Considerations
● Sinc length is finite → Apply a tapered window

● Monitor the cut-off frequencies value
● Amplitude learning is not necessary

– Weights of the higher layer
● Initialisation of Parameters (cut-off frequencies)

– Perceptual scale (e.g. Mel) or random initialisation
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CNN vs SincNet
CNN 
impulse responses

CNN 
Frequency responses

Average 
impulse responses

SincNet 
impulse responses

SincNet 
Frequency responses

Average 
Frequency responses

E. Loweimi  7/42



  

SincNet vs CNN -- Advantages
● Parametric vs Non-parametric

– More interpretable
– Constraint on hypothesis space

● Regularisation → better generalisation
– Fewer parameters

● Less training data required
● Faster learning/convergence learning/convergence
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SincNet vs CNN -- Advantages
● Parametric vs Non-parametric

● Better performance on TIMIT & WSJ ...
– Lower loss and phone error rate (PER)
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Speaker Recognition with SincNet
Speaker Identification Task (CER%) Speaker Verification Task (EER%) 
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Kernelised CNNs IDEA
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Interpretable Kernel-based CNNs
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Kernelised CNNs IDEA

CarrierBaseband filter ≡ Kernel
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Learned via
Backprop



  

Kernelised CNNs IDEA

●  Kernel (baseband filter) Examples
 

✔ Sinc2 → Triangular filters (similar to MFCC) → Sinc2Net 
✔ Gammatone → Mimics filtering in Cochlea → GammaNet
✔ Gaussian → Gaussian or Gabor filter → GaussNet
✔ ...
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Complex Gabor CNN (CGCNN)
● CNN with Complex Gabor kernel
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Complex Gabor CNN (CGCNN)

I think A should be \sqrt(log2)!
Set G(f) = 1/sqrt(2) and solve for f

● CNN with Complex Gabor kernel
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CGCNN Advantages / Performance
● Optimal time-frequency resolution trade-off

– Gaussian → Δt Δω = 0.5; For others → Δt Δω ≥ 0.5

● Performance is similar to GaussNet on Average

– Best results is not reliable; How many runs?
● Once I got 16.6% for SincNet while on ave PER is around 17.4%

– Freq response of both Real and Complex is identical 
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CGCNN other Advantages
● “But using complex quadratic filters that produce analytic signal for 

which the complex Gabor filtered signal is an approximation could 
help for instantaneous frequency estimation [23] and preserves the 
phase information that can be useful for other tasks such as speaker 
recognition.”
– Gabor filter is not quadratic → Should say quadrature!
– Gabor filter approximates analytic signal

● Gabor pair is not quadrature per sei because of DC component
– Instantaneous frequency estimation → Relevance?
– Preserve phase info … useful ... speaker recognition → Really? 
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Interpretation
● f

1
 and f

2
 are almost along a 

straight line → Constant Q
– Biological plausibility

● GaussNet vs SincNet
– GaussNet cannot model wide filters!

– Second layer can compensate for this 
by combining narrow filters(?)
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Complex CNN and MLP
● We propose to fully take this 

complex representation into 
consideration by further processing it 
with complex-valued neural networks 
layers only.

– Link to complexmodels in Github

● I think by complex neural net they 
mean a quaternion kind of network 
with only two streams, instead of 4.
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E2E-SincNet
● SincNet + Joint CTC-attention

– SincNet + (B)RNN En-De + Attention + CTC

● Performance: WSJ → 4.7%
● Challenge: 

– Alignment between raw speech samples and 
characters in RNN En-De framework
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Joint CTC-Attention
● Advantages

– Powerful seq2seq model

– CTC → left-to-right alignment

– Faster learning & convergence

● Shared encoder trained by L
Joint

● λOptimal? Depends ...

– λOptimal ≈ 0.2

Encoder

DecoderCTC
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E2E-SincNet Architecture

E. Loweimi  21/42

Github page

https://github.com/TParcollet/E2E-SincNet


  

Experimental Setup
● Frame blocking for raw wavefor model

– 25/10 ms instead of 200/10 ms
– RNN models the context; No need to long frames!

● SincNet → N
filters

=512, L
filters

=129

– Original setting in paper→N
filters

=80, L
filters

=251 

– Original setting in PyTorch Kaldi→N
filters

=128, L
filters

=129

● Other setting:
– #epochs: 15 for TIMIT, 20 for WSJ; Optimiser: AdaDelta; No drop-out

– λ
TIMIT

 = 0.5, λ
WSJ

=0.2
E. Loweimi  22/42



  

Results on TIMIT and WSJ
● TIMIT (PER) 

– E2E CNN: 21.1%

– E2E SincNet: 19.3

● WSJ (PER)
– E2E CNN: 6.5%

– E2E SincNet: 4.7%
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Some Typos ...
● “… It is also important to notice that g [filter impulse response] 

is smoothed based on the Hamming window …”

– Multiplying in window → resolution-leakage trade-off

– Convolving with window → smoothing ← understandable ...

● “In the original SincNet proposal [16], chunks of raw signal are 
cre- ated every 400ms with a 10ms overlapping.”  ↔ 200ms

● In [16], the authors introduced a SincNet layer composed of 128 
filters of size 251. ↔ 80 (in PyTorch-Kaldi setup is 128)
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ATTENTION !!!
● These two work by Zeghidour et al. are actually nonparametric 

CNNs, initialised by parametric filters. That is,
– First conv layer filters are initialised using Gammatone (GT) or Gabor 

which are parametric filters with two or three parameters 
– BUT number of free parameters during training equals filter length, i.e 

all filter taps are learnt ↔ non-parametric
 

● This is similar to Google work by Hoshen et al. and Sainath et al.
– First conv layer init. by GT filters but learnt in a nonparametric fashion 
– Please refer to the 3rd tutorial in Listen! on 4/Feb/2020 for more details

E. Loweimi
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Idea 
● Replace MFSC* with Time Domain (TD) Filterbank
● Triangular filters are initially approximated by Gabor 

wavelet
● The filters are complex in time domain

– Magnitude (modulus) is computed through L
2
-pooling

● DNN is not complex like CGCNN

● Learn the all filter taps, NOT fc and BW, via backprop
* Mel Frequency Spectral Coefficient
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Time-Domain Filterbank
● Consider MFSC (simply filterbank features ;-))

Nth filter freq responseSTFT of x at frame t

Parseval’s 
Theorem
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Time-Domain Filterbank
● Approximate MFSC ...

E. Loweimi  26/42
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Time-Domain Filterbank
● Approximate MFSC ...
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Time-Domain Filterbank
● Approx. MFSC with (first-order) Scattering Spectrum

φ
n
(t) wavelet approximates 

nth (triangular) filter
Hanning window
(scaling function) 
For averaging or smoothing

Φ should not be 
shorter than φ

n
(t) 
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Time-Domain Filterbank
● Approx. MFSC with (first-order) Scattering Spectrum

η
n
: f

c
 of nth filter

ω
n
 → FWHM: 

full width at half maximum
Simply -3dB bandwidth ;-)

E. Loweimi  26/42



  

Time-Domain Filterbank
● Approx. MFSC with (first-order) Scattering Spectrum

φ
n
 is normalised to have 

the same energy as Ψ
n
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Time-Domain Filterbank
● Approx. MFSC with (first-order) Scattering Spectrum

E. Loweimi  26/42
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TD-Filterbank System Architecture
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● DNN1: 5 layers CNN (ReLU), 1k filters, width 5, Do 0.5

● DNN2: DNN1 + dropout (Do) 0.7

● DNN3: 8 layers,CNN, PReLU, Do 0.7

Conv2: Averaging via
Grouped Convolution

Biases set to zero for Conv1 
& 2 to resemble MFSC.

E. Loweimi  27/42
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TD-Filterbank Types
● Fixed

– Init with Mel-fbank fc/BW; freeze fbank (φ) and ave (Φ) during 
training

● Learn-filterbank
– Init with Mel-fbank fc/BW; learn fbank, freeze ave in hann^2

● Randinit
– Init randomly; learn both fbank/ave

● Learn-all
– Init with Mel-fbank fc/BW; learn both fbank (φ) and averaging (Φ) 
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Experimental Results – E2E
● Comparable PER to MFSC

– Marginal gain
● Hanning2 ave is good enough

– No need to learn 
averaging!

● Initialisation is important
– Randinit performs poorly!
– Data size, TIMIT?

Architectures:
DNN2: CNN-5L-ReLU-do0.7

TIMIT
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Experimental Results 
E2E phone Recognition

●  DNN3 is better that both DNN1 == DNN2
●  Comparable performance to MFSC
●  Learn pre-emphasis → 0.1% PER reduction

DNN1

DNN2

DNN3

PReLU:
Parametric ReLU; 
learn slope for 
negative pre-activ

40 filters
40+40

Learn pre-emphasis
(FIR high-pass, 1-az-1)
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Gabor Filters vs Triangular Filters

● Mel fbank (solid) vs 
Gabor (dashed)
– Gabor is smoother

● Gaussian vs Triangle

● Spectrograms are similar
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Learned Filters

● Filters are biologically plausible ... 
  

✔ Asymmetric
✔ Sharp attack and slow decay

 

● Spread of filters in time & freq 
domains could be different

Real Part Imaginary PartImaginary Part Real Part

CNN-8L- PReLU-do 0.7 + TD-filterbanks model
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Learned Filters
● f

c
 remain similar to Mel; BW varies a lot

  

● Energy@negative freq? 
✔ Yes, complex filter and Re/Im parts are not 

Hilbert pair
✔ Initially, Re & Im were ~ Hilbert pair (Gabor)
✔ Analyticity is not preserved during training
 

● Importance of preserving analyticity?
➢ sub-band Hilbert envelop extraction

● r
a 
= E@Neg/E@Pos → r

a
=0.26

➢ Analytic signal → r
a
=0; Real Signal → r

a
=1

CNN-8L- PReLU-do 0.7 + TD-filterbanks model
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INTERSPEECH 2018
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Study the Effect of Following ...
● Gammatone instead of Gabor (~ Scattering Spec)

● Importance of low-pass filtering
– Hanning^2 window vs max-pooling

● Importance of instance normalisation
– Mean-var norm per channel per utterance [after log]

E. Loweimi  30/42



  

SCattering vs GammaTones Models
● Both are parametric CNNs
● Differences

– Belong to different families
– SC is complex; GT is real
– #filters→SC: 40+40; GT: 40

– Non-linearity→|L
2
|2 vs ReLU

– Pooling→|Hann|2 vs Max-pooling

400 samples width ≡ 25 ms
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Instance Normalisation
● MVN per channel per utterance
● For Gammatone-based models

– Critical, Faster convergence, 
Stabilises training

● For Scattering-based models
– Minor effect, Y? Scaling func.
– Slightly faster convergence Letter Error Rate (LER) 

every 10 epochs
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Experimental Setup
● Framework: End-to-End, WSJ
● Toolkit: Wav2letter → Facebook toolkit for E2E ASR
● Training: SI284, Dev: Nov93-dev, Test: Nov92-eval
● Performance measure: WER and LER
● Architecture: 16 layers CNN with GLU (Gated Linear Unit)

– GLU: halves #output-channels (half act as gate)

● LM for WER → standard 4-gram built on WSJ LM data
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Initialisation & Low-pass Filter Effect
● Gamma & Scatt outperform mel-fbank
● Initialisation effect (Nov92-Eval)

– GT→GT init better than rand

– SC→rand init better than Gabor/Mel

● Low-pass effect (Nov92-Eval)
– GT→Han-fixed better than max-pool

– SC→Han-fixed better than Han-learnt Dev Eval
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Effect of Learning Pre-emphasis
● Pre-emphasis filter

– FIR, 2 taps [-0.97, 1], highpass

– Conv layer, kWidth=2, Stride=1

– Learn it; init with [-0.97, 1] 

● Helpful for both GT and SC
– GT→ 0.1 – 0.2

– SC → -0.4 – 0.4

Dev Eval

E. Loweimi  35/42



  

Effect of Learning Pre-emphasis
● Pre-emphasis filter

– FIR, 2 taps [-0.97, 1], highpass

– Conv layer, kWidth=2, Stride=1

– Learn it; init with [-0.97, 1] 

● Helpful for both GT and SC
– GT→ 0.1 – 0.2

– SC → -0.4 – 0.4

● WER & LER correlation can be < 0

Corr < 0

E. Loweimi  35/42
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 IDEA ...
● Raw waveform acoustic model adaptation

– Adapt parameters of Sinc layer, i.e. f
c
 and BW

– Compared with VTLN and LHUC
 

● How:
– Trained on adult (AMI-ihm), 100 hours, meeting speech
– Adapted to children (PF-STAR), 14 hours, read speech
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SincNet Adaptation vs VTLN
● Parameters

– VTLN → f
warping

(ω, α) ← 1 param

– SincNet → f
c
 & BW ← 2#filters

● Domain 
– SincNet ↔ time
– VTLN↔ frequency

● Learn f
c
 & BW vs grid search 

for α
Warping function: 
  – Exp: piece-wise linear, bilinear, etc.
  – Characterised by α E. Loweimi  37/42

Compression
(female)

Stretch*
(male)

Note*: In HTK α > 1 ≡ stretch.



  

Experimental Setup
● Architecture:

– Sinc (40 filters) + 6L 1D CNN
– 9M parameters

● Optimiser: 
– Adam, lr=0.0015

● Frame → 200ms / 10ms

● Implementation: 
– Keras + TF

● LM interpolation of AMI (KN-
3gram+Fisher) and PF-STARE. Loweimi  38/42



  

Experimental Results on AMI
● Filter initialisation

– Mel
– Flat (uniform, not random)
– Uniform (random)

 

● Similar WER BUT markedly 
different learned fc & BW

6 epochs
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Adapted Sinc Layer (filterbank)

● Adaptation from Adult to Children ...

– involves spectrum stretch, i.e f
adapted

 > f
unadapted

– more energy in high frequencies

co
mpress

ion

stre
tch
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ASR Results

– LHUC0: LHUC on Sinc layer
 

– Sinc+LHUC0: Adapt Sinc + LHUC0
 

– ALL-Sinc: all param, excluding sinc– LHUC adapts the filter gain
 

– All-Sinc prune to overfitting
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Wrap-up
● Parametric CNN 

– Allows for embedding prior info in the network
– Can improve the performance, even for small tasks
– Faster convergence with fewer data

● Future work
– Further E2E, Raw waveform + RNNs
– Raw waveform + Unsupervised
– Dynamic/Evolution of the first layer during training
– ...

 42/42E. Loweimi



  

That’s it!
● Thanks for Your attention
● Q/A

● Appendices
A1) Gammatone Filterbank

A2) Denis Gabor Contributions

A3) CTC

A4) VTLN
E. Loweimi



  

A1) Gammatone Filterbank
● Structure: A set of IIR bandpass filters, defined in time domain

● Obtained by reverse correlation from measurements of auditory 
nerve responses of cats

● Parameter k: gain, B: decay factor, fc: centre freq (Hz), n: order

● 3 < n < 5→ Good approximation for human auditory (Cochlea) filters

● fc based on Greenwood or equal distance in a perceptual scale

● B → Equivalent Rectangular Bandwidth (Hz)
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A2) Dennis Gabor’s Contributions
● Electrical Engineer and Physicist

– Hologram → 1971 Nobel prize
● Signal Processing

– Gabor-Heisenberg uncertainty principle (Δt Δω ≥ 0.5)
– Gabor filters

● Texture analysis + perceptually motivated
– Gabor Transform/Wavelet

● FT + Gaussian window (1946) → STFT
● Gabor atoms

Dennis Gabor
(1900-1979)
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A2) Gabor Transform Limits
● Non-orthogonal family, though forms a frame

– Complete but redundant

● Well-localised but infinite support
– Truncation

● Gabor pair is not precisely quadrature
– Because of DC component of even part
– BUT approximately, it is  

E. Loweimi  A2/4



  

A3) Connectionist Temporal Classification
● CTC is a special output layer for Seq2Seq modes (RNNs)

● Handles Ylen !=  Xlen; Ylen should be shorter

● Does not require lexicon and X→Y alignment 
● Blank symbol → to handle all possible alignments
● Learned-based on likelihood (CE)
● Loss efficiently computable using forward/backward algorithms
● Decoding → beam search + Dynamic Programming
● Disadvantages

– Conditional-independence assumption, i.e  yt  ╨
 yt-1 | X

– Does not explicitly model inter-label dependencies
E. Loweimi  A3/4



  

A4) Vocal Tract Length Norm. (VTLN)
● VT Length (VTL) variation shifts formants, almost linearly

– Female speakers, shorter VTL => larger formants
– Adaptation for female to standard spk → compress spectrum, i.e  

● VTLN HOW: 
– Choose warping function, e.g. piece-wise linear, bilinear
– Find the warping factor

1.  First pass recognition

2.  Forced-alignment for all warping factors (grid search)

3.  Select factor with max likelihood

4.  Second pass recognition after applying optimal warping factor

● Effective when speakers clearly identifiable, e.g telephone speech

compression

stretch

E. LoweimiE. Loweimi  A4/4
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