

Raw Waveform Modelling for ASR A Literature Review

Part IV: Parametric CNNs

Erfan Loweimi

Centre for Speech Technology Research (CSTR) The University of Edinburgh Listen! 14.4.2020

Outline

- Time-Frequency Analysis (TFA) without Fourier
- Parametric Kernelised CNNs
 - SincNet, Sinc²Net, GammaNet, GaussNet, Complex Gabor CNN
- E2E Raw waveform models for ASR
 - Time-Domain Filterbank
 - E2E-SincNet
- Adaptation of SincNet acoustic models

TFA by Time-domain Processing

- Requires impulse response, *h(t)*, of fbank filters
 - Known for Gammatone filters

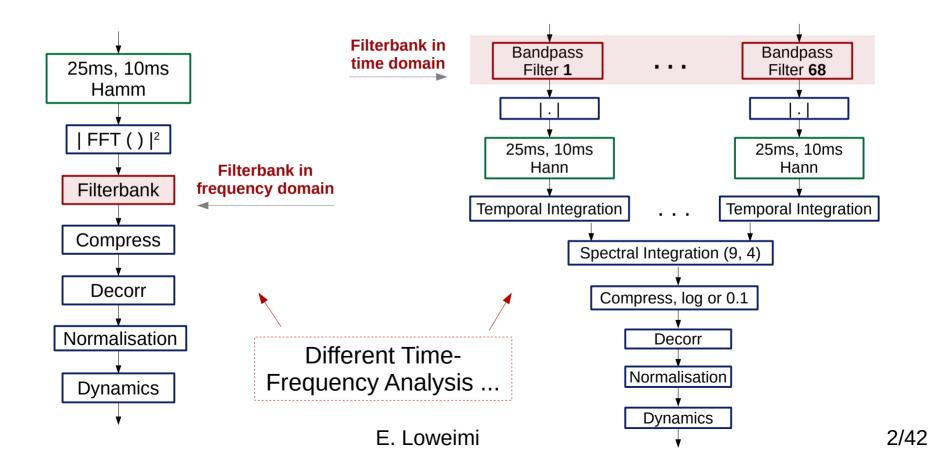
GAMMATONE FEATURES AND FEATURE COMBINATION FOR LARGE VOCABULARY SPEECH RECOGNITION

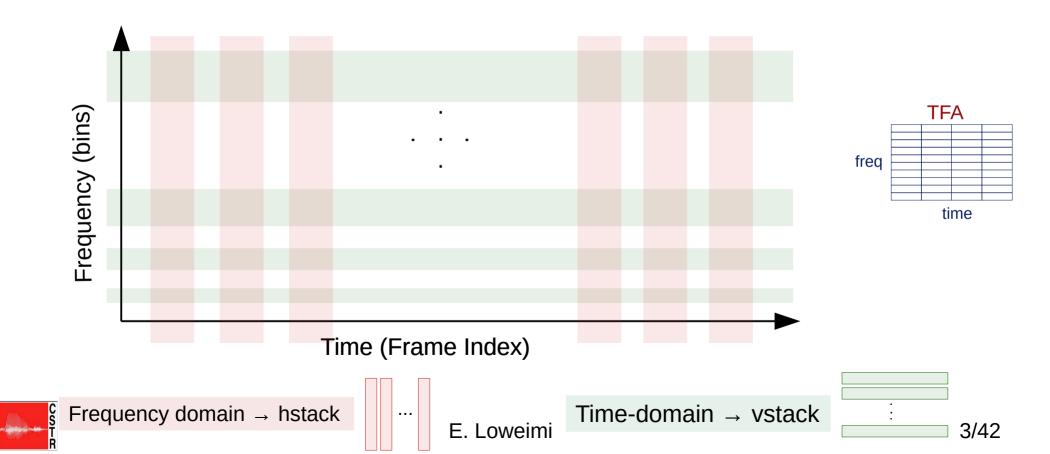
ICASSP 2007

R. Schlüter¹, I. Bezrukov¹, H. Wagner², H. Ney¹

¹Lehrstuhl für Informatik 6 - Computer Science Department ²Lehrstuhl für Biologie II - Biology Department RWTH Aachen University, Aachen, Germany schlueter@cs.rwth-aachen.de

MFCC vs Gammatone Feature





SincNet

SPEAKER RECOGNITION FROM RAW WAVEFORM WITH SINCNET

SLT 2018

Mirco Ravanelli, Yoshua Bengio*

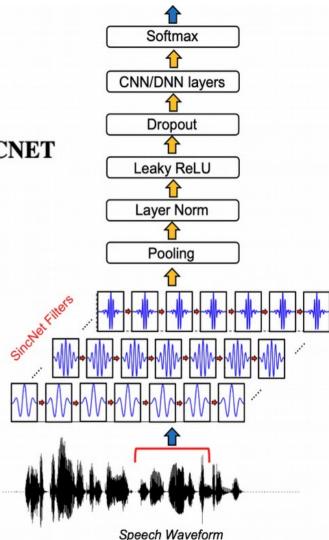
Mila, Université de Montréal, *CIFAR Fellow

Interpretable Convolutional Filters with SincNet

NIPS@IRASL **Mirco Ravanelli** Mila, Université de Montréal

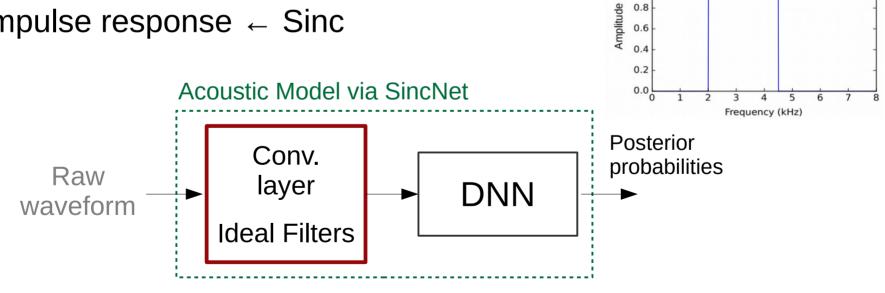
Yoshua Bengio Mila, Université de Montréal **CIFAR** Fellow

2018



SincNet – Definition

- Convolutional layer with ideal bandpass filters, takes raw waveform as input 1.2 1.0
 - Impulse response ← Sinc



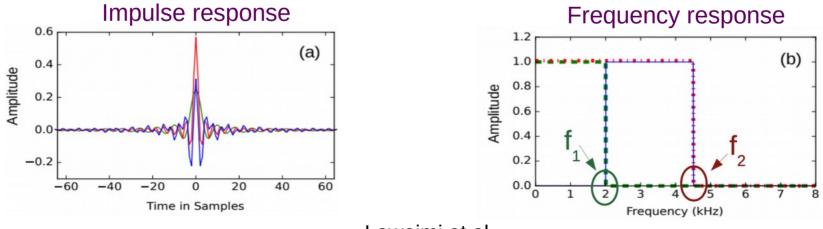
0.8

0.6

SincNet – Filters

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

$$\begin{split} h(t;\theta^{(i)}) &= \frac{2f_2^{(i)}sinc(2f_2^{(i)}t)}{2f_2^{(i)}} - \frac{2f_1^{(i)}sinc(2f_1^{(i)}t)}{2f_1^{(i)}} \\ H(f;\theta^{(i)}) &= \frac{\Pi(\frac{f}{2f_2^{(i)}})}{2f_2^{(i)}} - \frac{\Pi(\frac{f}{2f_1^{(i)}})}{2f_1^{(i)}} \end{split}$$



Loweimi et al

SincNet – Parameters

• Parameter Set (Θ) \rightarrow cut-off frequencies: $f_1 \& f_2$

$$\begin{split} h(t;\theta^{(i)}) &= 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t) \\ H(f;\theta^{(i)}) &= \Pi(\frac{f}{2f_2^{(i)}}) - \Pi(\frac{f}{2f_1^{(i)}}) \end{split}$$

$$\Theta = \{\theta^{(i)}\} = \{f_1^{(i)}, f_2^{(i)}\}$$

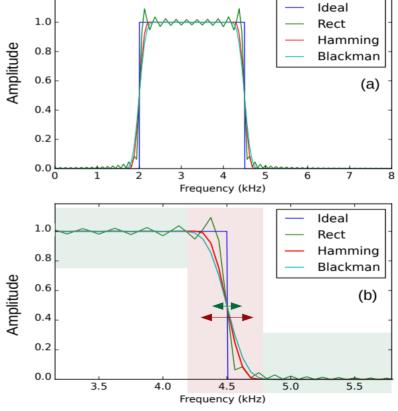
Learned via Backprop

zion:

• Apply a tapered window

$$h(t; \theta^{(i)}) \leftarrow h(t; \theta^{(i)}) \ window(t)$$

- Sinc length is finite
 - Rectangular windowing
 - Ripples in pass/stop bands



1.2

SincNet – Practical Considerations (2)

- Monitor the cut-off frequencies value
 - Both should be positive and $f_2 > f_1$
 - f_2 < Nyquist Rate

$$f_1 \leftarrow |f_1|$$
$$f_2 \leftarrow f_1 + |f_2 - f_1|$$

SincNet – Practical Considerations

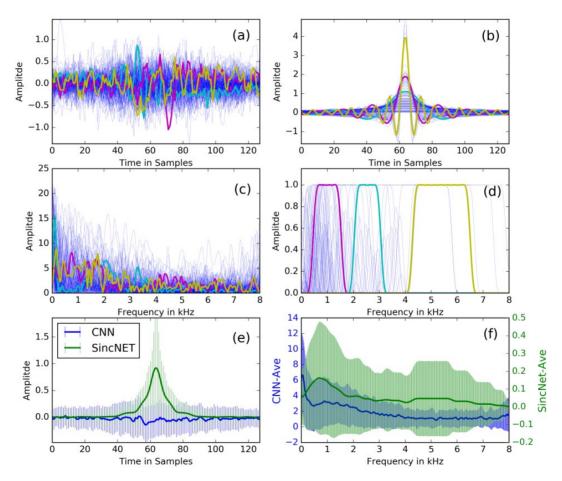
- Sinc length is finite \rightarrow Apply a tapered window
- Monitor the cut-off frequencies value
- Amplitude learning is not necessary
 - Weights of the higher layer
- Initialisation of Parameters (cut-off frequencies)
 - Perceptual scale (e.g. Mel) or random initialisation

CNN vs SincNet

CNN impulse responses

CNN Frequency responses

Average impulse responses



SincNet impulse responses

SincNet Frequency responses

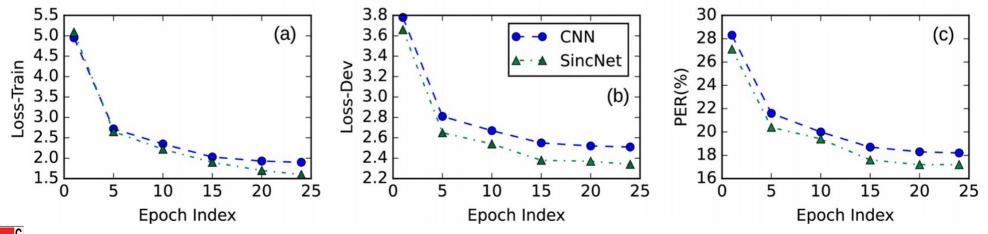
Average Frequency responses

SincNet vs CNN -- Advantages

- **Parametric** vs Non-parametric
 - More interpretable
 - Constraint on hypothesis space
 - Regularisation \rightarrow better generalisation
 - Fewer parameters
 - Less training data required
 - Faster learning/convergence

SincNet vs CNN -- Advantages

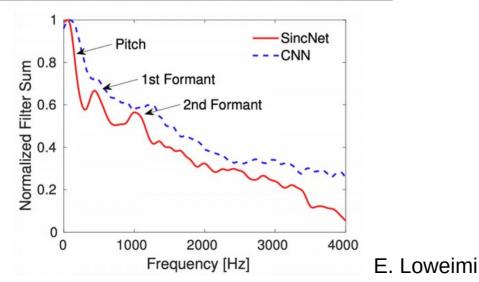
- Parametric vs Non-parametric
- Better performance on TIMIT & WSJ ...
 - Lower loss and phone error rate (PER)



Speaker Recognition with SincNet

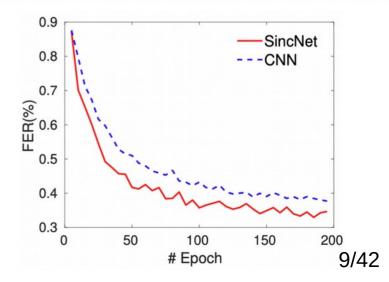
Speaker Identification Task (CER%)

	TIMIT	LibriSpeech	
DNN-MFCC	0.99	2.02	
CNN-FBANK	0.86	1.55	
CNN-Raw	1.65	1.00	
SINCNET	0.85	0.96	



Speaker Verification Task (EER%)

	TIMIT	LibriSpeech
DNN-MFCC	0.99	2.02
CNN-FBANK	0.86	1.55
CNN-Raw	1.65	1.00
SINCNET	0.85	0.96



Kernelised CNNs IDEA

On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), School of Informatics, University of Edinburgh {e.loweimi, peter.bell, s.renals}@ed.ac.uk

Interpretable Kernel-based CNNs

$$h(t;\theta^{(i)}) = 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t)$$
$$h(t;\theta^{(i)}) = \frac{1}{\pi t}(\sin(2\pi f_2^{(i)}t) - \sin(2\pi f_1^{(i)}t))$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$h^{(i)}(t) = 2B^{(i)}sinc(B^{(i)}t) \cos(2\pi f_c^{(i)}t)$$

$$B^{(i)} = f_2^{(i)} - f_1^{(i)} \quad , \quad f_c^{(i)} = \frac{f_1^{(i)} + f_2^{(i)}}{2}$$

Kernelised CNNs IDEA

$$h^{(i)}(t) = 2B^{(i)}sinc(B^{(i)}t) \cos(2\pi f_c^{(i)}t)$$

Baseband filter ≡ Kernel Carrier

$$h^{(i)}(t; \theta^{(i)}, f_c^{(i)}) = K(t; \theta^{(i)}) \quad carrier(t; f_c^{(i)})$$

Learned via Backprop

Parameter Set: $\Theta = \{\theta^{(i)}, f_c^{(i)}\}$

Kernelised CNNs IDEA

$$h^{(i)}(t; \theta^{(i)}, f_c^{(i)}) = K(t; \theta^{(i)}) \quad carrier(t; f_c^{(i)})$$

Parameter Set:
$$\Theta = \{\theta^{(i)}, f_c^{(i)}\}$$

- Kernel (baseband filter) Examples
 - ✓ Sinc² → Triangular filters (similar to MFCC) → Sinc²Net
 - \checkmark Gammatone → Mimics filtering in Cochlea → GammaNet
 - \checkmark Gaussian \rightarrow Gaussian or Gabor filter \rightarrow GaussNet

Cont

CGCNN: COMPLEX GABOR CONVOLUTIONAL NEURAL NETWORK ON RAW SPEECH

Paul-Gauthier Noé¹, Titouan Parcollet^{1,2}, Mohamed Morchid¹

¹LIA, Université d'Avignon, France ²University of Oxford, UK

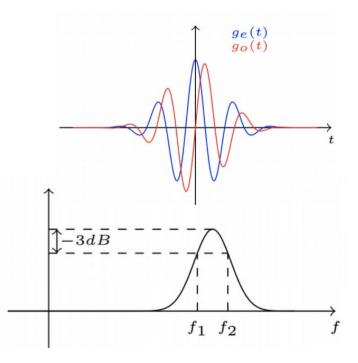
Complex Gabor CNN (CGCNN)

• CNN with Complex Gabor kernel

$$g(t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{t^2}{2\sigma^2}) \exp(j2\pi f_c t)$$
$$= g_e(t) + jg_o(t)$$

$$G(f) = \exp(-2\pi^2 \sigma^2 (f - f_0)^2)$$

$$\sigma = \frac{A}{\pi (f_2 - f_1)}$$
 $f_c = \frac{f_1 + f_2}{2}$



3ln10

A = 1

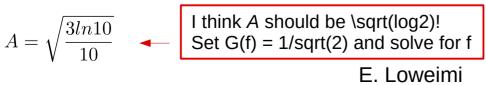
Complex Gabor CNN (CGCNN)

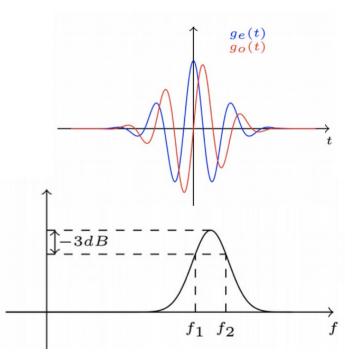
CNN with Complex Gabor kernel

$$g(t) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{t^2}{2\sigma^2}) \exp(j2\pi f_c t)$$
$$= g_e(t) + jg_o(t)$$

$$G(f) = \exp(-2\pi^2 \sigma^2 (f - f_0)^2)$$

$$\sigma = \frac{A}{\pi (f_2 - f_1)} \qquad f_c = \frac{f_1 + f_2}{2}$$





CGCNN Advantages / Performance

- Optimal time-frequency resolution trade-off
 - Gaussian $\rightarrow \Delta t \Delta \omega = 0.5$; For others $\rightarrow \Delta t \Delta \omega \ge 0.5$
- Performance is similar to GaussNet on Average
 - Best results is not reliable; How many runs?
 - Once I got 16.6% for SincNet while on ave PER is around 17.4%
 - Freq response of both Real and Complex is identical

Model	Valid.%	Avg. Test%	Best Test%
Gabor-CNN-CTC [18]	-	18.8	18.5
SincNet [2]	-	17.2	-
GaborReal	15.2	17.2	16.9
GaborComplex	15.2	17.1	16.7

CGCNN Advantages / Performance

- Optimal time-frequency resolution trade-off
 - Gaussian $\rightarrow \Delta t \Delta \omega = 0.5$; For others $\rightarrow \Delta t \Delta \omega \ge 0.5$
- Performance is similar to GaussNet on Average
 - Best results is not reliable; How many runs?
 - Once I got 16.6% for SincNet while on ave PER is around 17.4%
 - Freq response of both Real and Complex is identical

Model	Valid.%	Avg. Test%	Best Test%
Gabor-CNN-CTC [18]	-	18.8	18.5
SincNet [2]	-	17.2	-
GaborReal	15.2	17.2	16.9
GaborComplex	15.2	17.1	16.7

CGCNN Advantages / Performance

- Optimal time-frequency resolution trade-off
 - Gaussian $\rightarrow \Delta t \Delta \omega = 0.5$; For others $\rightarrow \Delta t \Delta \omega \ge 0.5$
- Performance is similar to GaussNet on Average
 - Best results is not reliable; How many runs?
 - Once I got 16.6% for SincNet while on ave PER is around 17.4%
 - Freq response of both Real and Complex is identical

Model	Valid.%	Avg. Test%	Best Test%	-	
Gabor-CNN-CTC [18]	-	18.8	18.5	-	
SincNet [2]	-	17.2	-		Ma called it CauceNat
GaborReal	15.2	17.2	16.9	-	We called it GaussNet
GaborComplex	15.2	17.1	16.7		in our Interspeech 2019

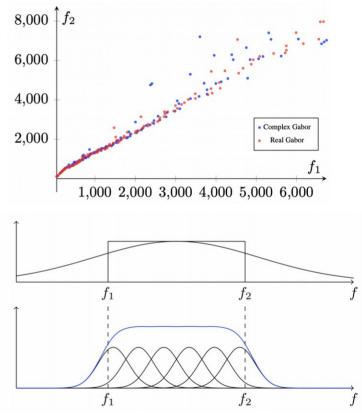
CGCNN other Advantages

- "But using complex quadratic filters that produce analytic signal for which the complex Gabor filtered signal is an approximation could help for instantaneous frequency estimation [23] and preserves the phase information that can be useful for other tasks such as speaker recognition."
 - Gabor filter is not *quadratic* \rightarrow Should say *quadrature*!
 - Gabor filter approximates analytic signal
 - Gabor pair is not quadrature per sei because of DC component
 - Instantaneous frequency estimation \rightarrow Relevance?
 - Preserve phase info ... useful ... speaker recognition \rightarrow Really?

Interpretation

- f_1 and f_2 are almost along a straight line \rightarrow Constant Q
 - Biological plausibility

- GaussNet vs SincNet
 - GaussNet cannot model wide filters!
 - Second layer can compensate for this by combining narrow filters(?)



Complex CNN and MLP

- We propose to fully take this complex representation into consideration by further processing it with complex-valued neural networks layers only.
 - Link to complexmodels in Github

• I think by complex neural net they mean a quaternion kind of network with only two streams, instead of 4.

```
ge = torch.cos(2*math.pi*f_times_t*self.sample_rate)
ge = torch.mul(self.gaussian_window(self.n_, sigma), ge)
```

```
go = torch.sin(2*math.pi*f_times_t*self.sample_rate)
go = torch.mul(self.gaussian_window(self.n_, sigma), go)
```

```
max_, _ = torch.max(ge, dim=1, keepdim=True)
ge = ge / max_
```

```
max_, _ = torch.max(go, dim=1, keepdim=True)
go = go / max_
```

```
filters_ge = (ge * self.window_).view(self.out_channels, 1, self.kernel_size)
filters_go = (go * self.window_).view(self.out_channels, 1, self.kernel_size)
```

```
#filters_ge = ge.view(self.out_channels, 1, self.kernel_size)
#filters_go = go.view(self.out_channels, 1, self.kernel_size)
```

```
self.filters = torch.cat((filters_ge, filters_go),0)
```

```
conv_out = F.conv1d(waveforms, self.filters, stride=self.stride, padding=self.;
```


E2E-SINCNET: TOWARD FULLY END-TO-END SPEECH RECOGNITION

Titouan Parcollet*^{‡†}

Mohamed Morchid*

Georges Linarès*

* Avignon Université, France
 [‡] University of Oxford, UK
 [†]Orkis, France

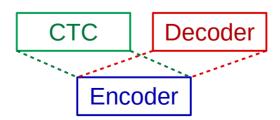
E2E-SincNet

- SincNet + Joint CTC-attention
 - SincNet + (B)RNN En-De + Attention + CTC
- Performance: WSJ \rightarrow 4.7%
- Challenge:
 - Alignment between raw speech samples and characters in RNN En-De framework

Joint CTC-Attention

- Advantages
 - Powerful seq2seq model
 - CTC \rightarrow left-to-right alignment
 - Faster learning & convergence
- Shared encoder trained by L_{Joint}
- λ_{Optimal} ? Depends ...

$$- \lambda_{\text{Optimal}} \approx 0.2$$

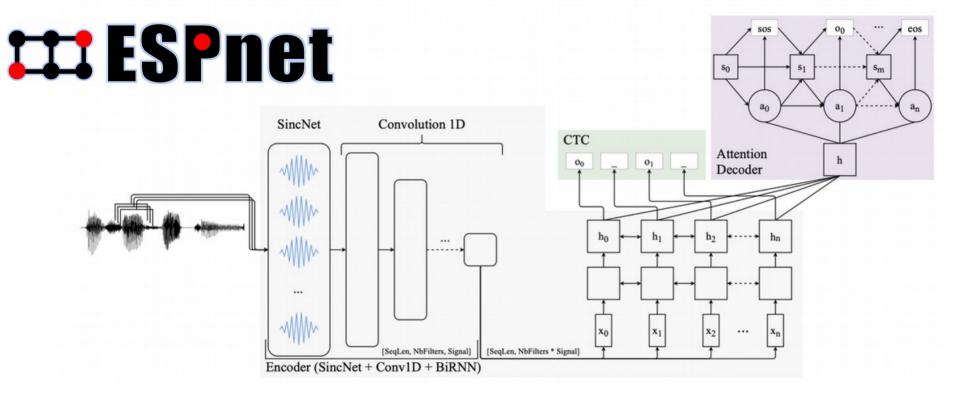


$$L_{CTC} = -\sum_{(X,Y)\in D} \log P(Y|X)$$

$$L_{En-De} = -\sum_{t} \log P(y_t | x_t, y_{t-1}^{truth})$$

$$L_{Joint} = \lambda L_{CTC} + (1 - \lambda) L_{En-De}$$
 der

E2E-SincNet Architecture



Github page

Experimental Setup

- Frame blocking for raw wavefor model
 - 25/10 ms instead of 200/10 ms
 - RNN models the context; No need to long frames!
- SincNet \rightarrow N_{filters}=512, L_{filters}=129
 - Original setting in paper $N_{\rm filters} {=} 80$, $L_{\rm filters} {=} 251$
 - Original setting in PyTorch Kaldi $\rightarrow N_{\text{filters}}$ =128, L_{filters}=129
- Other setting:
 - #epochs: 15 for TIMIT, 20 for WSJ; Optimiser: AdaDelta; No drop-out

-
$$\lambda_{\text{TIMIT}} = 0.5, \lambda_{\text{WSJ}} = 0.2$$

ttt ESPnet

Results on TIMIT and WSJ

- TIMIT (PER)
 - E2E CNN: 21.1%
 - E2E SincNet: 19.3

- WSJ (PER)
 - E2E CNN: 6.5%
 - E2E SincNet: 4.7%

Models	Fea.	Valid. %	Test %
E2E-CNN	RAW	18.9	21.1
ESPnet (VGG) [18]	FBANK	17.9	20.5
E2E-SincNet	RAW	17.3	19.3

Models	Fea.	Valid.	Test
BiGRU-Att. [9]	FBANK	-	9.3
Wav2Text [28]	FBANK	12.9	8.8
Jasper [8]	FBANK	9.3	6.9
E2E-CNN	RAW	9.8	6.5
ESPnet (VGG) [18]	FBANK	9.7	6.4
CNN-GLU-ASG [7]	RAW	8.3	6.1
SelfAttention-CTC [12]	FBANK	8.9	5.9
E2E-SincNet	RAW	7.8	4.7

Some Typos ...

- "... It is also important to notice that g [filter impulse response] is **smoothed** based on the Hamming window ..."
 - Multiplying in window \rightarrow resolution-leakage trade-off
 - Convolving with window \rightarrow smoothing \leftarrow understandable ...
- "In the original SincNet proposal [16], chunks of raw signal are cre- ated every 400ms with a 10ms overlapping."
 ↔ 200ms
- In [16], the authors introduced a SincNet layer composed of 128 filters of size 251. ↔ 80 (in PyTorch-Kaldi setup is 128)

LEARNING FILTERBANKS FROM RAW SPEECH FOR PHONE RECOGNITION

Neil Zeghidour^{1,2}, Nicolas Usunier¹, Iasonas Kokkinos¹, Thomas Schatz², Gabriel Synnaeve¹, Emmanuel Dupoux²

¹ Facebook A.I. Research, Paris, France, New York, USA ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France

End-to-End Speech Recognition From the Raw Waveform

Neil Zeghidour^{1,2}, Nicolas Usunier¹, Gabriel Synnaeve¹, Ronan Collobert¹, Emmanuel Dupoux²

 ¹ Facebook A.I. Research, Paris, France; New York & Menlo Park, USA
 ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France {neilz, usunier, gab, locronan}@fb.com, emmanuel.dupoux@gmail.com

E. Loweimi

ATTENTION !!!

- These two work by *Zeghidour et al.* are actually *nonparametric* CNNs, <u>initialised</u> by parametric filters. That is,
 - First conv layer filters are initialised using Gammatone (GT) or Gabor which are parametric filters with two or three parameters
 - BUT number of free parameters during training equals filter length, i.e all filter taps are learnt ↔ non-parametric
- This is similar to Google work by Hoshen et al. and Sainath et al.
 - First conv layer init. by GT filters but learnt in a nonparametric fashion
 - Please refer to the 3rd tutorial in Listen! on 4/Feb/2020 for more details

LEARNING FILTERBANKS FROM RAW SPEECH FOR PHONE RECOGNITION

Neil Zeghidour^{1,2}, Nicolas Usunier¹, Iasonas Kokkinos¹, Thomas Schatz², Gabriel Synnaeve¹, Emmanuel Dupoux²

¹ Facebook A.I. Research, Paris, France, New York, USA ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France

E. Loweimi

- Replace MFSC* with **Time Domain (TD)** Filterbank
- Triangular filters are initially approximated by *Gabor* wavelet
- The filters are complex in time domain
 - Magnitude (modulus) is computed through L_2 -pooling
 - DNN is not complex like CGCNN
- Learn the all filter taps, **NOT** f_c and *BW*, via backprop

* Mel Frequency Spectral Coefficient

• Consider MFSC (simply filterbank features ;-))

Parseval's
Theorem
$$MFSC_x(t,n) = \frac{1}{2\pi} \int_{\omega} |X(t,\omega)|^2 |\Psi_n(\omega)|^2 d\omega$$
$$MFSC_x(t,n) = \sum_{\tau} (x_t(\tau) * \psi_n(\tau))^2$$

• Approximate MFSC ...

$$MFSC_x(t,n) = \frac{1}{2\pi} \int_{\omega} |X(t,\omega)|^2 \ |\Psi_n(\omega)|^2 d\omega$$

$$\begin{aligned} MFSC_x(t,n) &= \sum_{\tau} (x_t(\tau) * \psi_n(\tau))^2 \\ \downarrow^{\tau} & |\Phi_n(\omega)|^2 \approx |\Psi_n(\omega)|^2 \\ MFSC_x(t,n) &\approx |x * \varphi_n|^2 * |\phi|^2(t) \end{aligned}$$

• Approximate MFSC ...

$$MFSC_{x}(t,n) = \frac{1}{2\pi} \int_{\omega} |X(t,\omega)|^{2} |\Psi_{n}(\omega)|^{2} d\omega$$
$$MFSC_{x}(t,n) = \sum_{\tau} \frac{(x_{t}(\tau) * \psi_{n}(\tau))^{2}}{|\Phi_{n}(\omega)|^{2}} |\Psi_{n}(\omega)|^{2}$$
Approximate
$$|\Psi_{n}(\omega)|^{2} \approx |\Psi_{n}(\omega)|^{2}$$
$$MFSC_{x}(t,n) \approx |x * \varphi_{n}|^{2} * |\phi|^{2}(t)$$

• Approx. MFSC with (first-order) Scattering Spectrum

$$\begin{split} MFSC_{x}(t,n) &= \sum_{\tau} (x_{t}(\tau) * \psi_{n}(\tau))^{2} \\ Mx(t,n) &\approx |x * \varphi_{n}|^{2} * |\phi|^{2}(t) \\ \varphi_{n}(t) \text{ wavelet approximates} \\ n^{th} (\text{triangular}) \text{ filter} \\ \varphi_{n}(t) &\propto \frac{1}{\sqrt{2\pi}\sigma_{n}} \exp(-\frac{t^{2}}{2\sigma_{n}^{2}}) \exp(-2\pi i\eta_{n}t) \\ \text{E. Loweimi} \end{split}$$

• Approx. MFSC with (first-order) Scattering Spectrum

$$MFSC_x(t,n) = \sum_{\tau} (x_t(\tau) * \psi_n(\tau))^2$$

$$\begin{array}{|c|c|c|c|c|} & \omega_{n} \rightarrow \text{FWHM:} \\ & \text{full width at half maximum} \\ & \text{Simply -3dB bandwidth ;-)} \end{array} & Mx(t,n) \approx |x \ast \varphi_{n}|^{2} \ast |\phi|^{2}(t) \\ & 1 & t^{2} \end{array}$$

$$\sigma_n = \frac{2\sqrt{2log2}}{\omega_n}$$

$$\varphi_n(t) \propto \frac{1}{\sqrt{2\pi}\sigma_n} \exp(-\frac{t^2}{2\sigma_n^2}) \exp(-2\pi i\eta_n t)$$

$$\eta_n: f_c \text{ of } n^{\text{th}} \text{ filter}$$

• Approx. MFSC with (first-order) Scattering Spectrum

$$MFSC_x(t,n) = \sum_{\tau} (x_t(\tau) * \psi_n(\tau))^2$$

$$Mx(t,n) \approx |x * \varphi_n|^2 * |\phi|^2(t)$$

$$\begin{split} \varphi_n(t) \propto & \frac{1}{\sqrt{2\pi}\sigma_n} \exp(-\frac{t^2}{2\sigma_n^2}) \; \exp(-2\pi i\eta_n t) \\ & \bullet \; & \bullet \; \\ & \bullet \; \\ \phi_n \text{ is normalised to have } \\ & \text{ the same energy as } \Psi_n \end{split}$$

• Approx. MFSC with (first-order) Scattering Spectrum

$$MFSC_x(t,n) = \sum_{\tau} (x_t(\tau) * \psi_n(\tau))^2$$

$$Mx(t,n) \approx |x * \varphi_n|^2 * |\phi|^2(t)$$

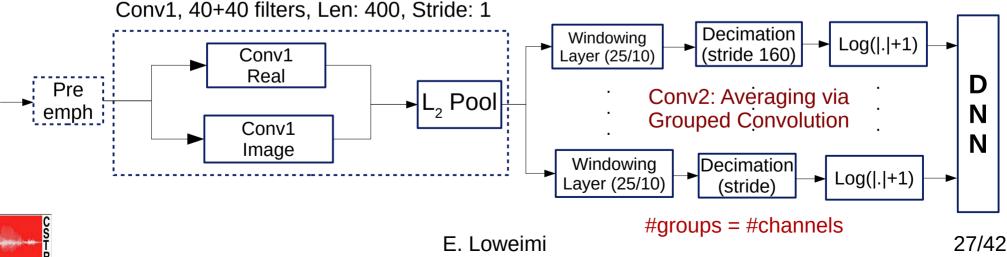
Second-order $||x * \varphi_{n1}| * \varphi_{n2}| * |\phi|^2(t)$

$$\varphi_n(t) \propto \frac{1}{\sqrt{2\pi\sigma_n}} \exp(-\frac{t^2}{2\sigma_n^2}) \exp(-2\pi i\eta_n t)$$

TD-Filterbank System Architecture

- DNN1: 5 layers CNN (ReLU), 1k filters, width 5, Do 0.5
- DNN2: DNN1 + dropout (Do) 0.7
- DNN3: 8 layers, CNN, PReLU, Do 0.7

Biases set to zero for Conv1 & 2 to resemble MFSC.



TD-Filterbank Types

- Fixed
 - Init with Mel-fbank fc/BW; freeze fbank (φ) and ave (Φ) during training
- Learn-filterbank
 - Init with Mel-fbank fc/BW; learn fbank, freeze ave in hann^2
- Randinit
 - Init randomly; learn both fbank/ave
- Learn-all
 - Init with MeI-fbank fc/BW; learn both fbank (φ) and averaging (Φ)

Experimental Results – E2E

- Comparable PER to MFSC
 - Marginal gain
- Hanning² ave is good enough
 - No need to learn averaging!
- Initialisation is important
 - Randinit performs poorly!
 - Data size, TIMIT?

Learning mode	Dev PER	Test PER
MFSC	17.8	20.6
Fixed	18.3	21.8
Learn-all	17.4	20.6
Learn-filterbank	17.3	20.3
Randinit	29.2	31.7

Architectures: DNN2: CNN-5L-ReLU-do0.7

τιΜΓ

Experimental Results E2E phone Recognition

	Model	Input	Dev PER	Test PER
	Hybrid HMM/Hierarchical CNN + Maxout + Dropout 10	MFSC + energy + Δ + ΔA	Δ 13.3	16.5
	CNN + CRF on raw speech 15	wav	-	29.2
	Wavenet 16	wav	-	18.8
	CNN-Conv2D-10L-Maxout 17	MFSC	16.7	18.2
	Attention model + Conv. Features + Smooth Focus [18]	MFSC + energy + Δ + $\Delta \Delta$	Δ 15.8	17.6
	LSTM + Segmental CRF [19]	MFSC + Δ + $\Delta\Delta$	-	18.9
	LSTM + Segmental CRF [19]	MFCC + LDA + MLLT +	MLLR -	17.3
	CNN-5L-ReLU-do0.5	MFSC	18.4	20.8
DNN1	CNN-5L-ReLU-do0.5 + TD-filterbanks	wav	18.2	20.4
	CNN-5L-ReLU-do0.7	MFSC 40 filters	17.8	20.6
DNN2	CNN-5L-ReLU-do0.7 + TD-filterbanks	wav 40+40	17.3	20.3
	CNN-8L-PReLU-do0.7	MFSC	16.2	18.1
DNN3	CNN-8L-PReLU-do0.7 + TD-filterbanks	wav	15.6	18.1
	CNN-8L-PReLU-do0.7 + TD-filterbanks-Learn-all-pre-emp	wav	15.6	18.0

PReLU:

Parametric ReLU; learn slope for negative pre-activ

Learn pre-emphasis (FIR high-pass, 1-az⁻¹)

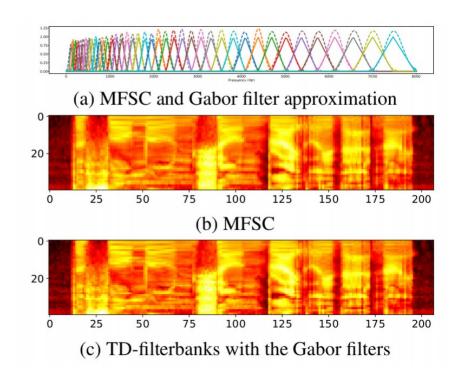
- DNN3 is better that both DNN1 == DNN2
- Comparable performance to MFSC
- Learn pre-emphasis \rightarrow 0.1% PER reduction

WNIVERS

Gabor Filters vs Triangular Filters

- Mel fbank (solid) vs Gabor (dashed)
 - Gabor is smoother
 - Gaussian vs Triangle

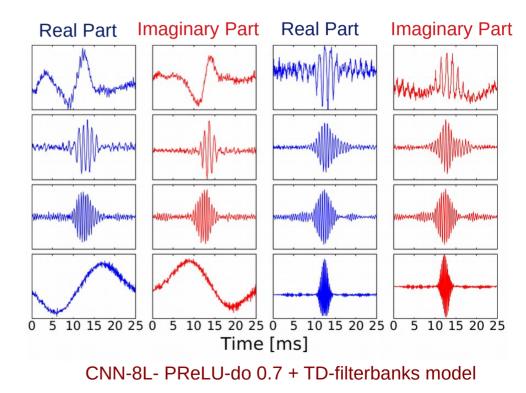
• Spectrograms are similar



Learned Filters

- Filters are biologically plausible ...
 - Asymmetric
 - Sharp attack and slow decay

• Spread of filters in time & freq domains could be different

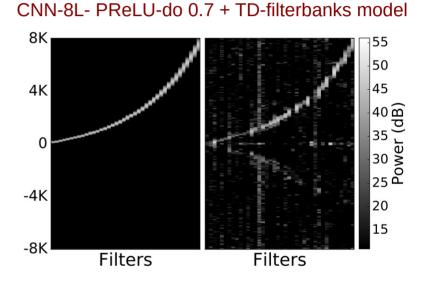


Learned Filters

E. Loweimi

- $\rm f_{\rm c}$ remain similar to MeI; BW varies a lot
- Energy@negative freq?
 - Yes, complex filter and Re/Im parts are not Hilbert pair
 - Initially, Re & Im were ~ Hilbert pair (Gabor)
 - Analyticity is not preserved during training
- Importance of preserving analyticity?
 - > sub-band Hilbert envelop extraction
- $r_a = E@Neg/E@Pos \rightarrow r_a=0.26$

> Analytic signal → r_a =0; Real Signal → r_a =1



29/42

End-to-End Speech Recognition From the Raw Waveform

Neil Zeghidour^{1,2}, Nicolas Usunier¹, Gabriel Synnaeve¹, Ronan Collobert¹, Emmanuel Dupoux²

¹ Facebook A.I. Research, Paris, France; New York & Menlo Park, USA ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France

{neilz, usunier, gab, locronan}@fb.com, emmanuel.dupoux@gmail.com

Study the Effect of Following ...

- Gammatone instead of Gabor (~ Scattering Spec)
- Importance of *low-pass filtering*
 - Hanning^2 window vs max-pooling
- Importance of *instance normalisation*
 - Mean-var norm per channel per utterance [after log]

SCattering vs GammaTones Models

- Both are parametric CNNs
- Differences
 - Belong to different families
 - SC is complex; GT is real
 - #filters \rightarrow SC: 40+40; GT: 40
 - Non-linearity $\rightarrow |L_2|^2$ vs ReLU

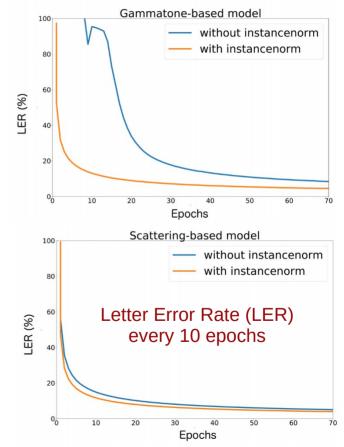
- Pooling \rightarrow |Hann|² vs Max-pooling

	SCATTERING	GAMMATONES
Conv ¹ (#in-#out-width-stride)	1-80-400-1	1-40-400-1
non-linearity	sq. L2-Pooling	ReLU
low-pass filter (wdth=400, strd=160)	sq. Hanning	max-pooling or sq. Hanning
log-compression ²	$\log(1 + abs(.))$	$\log(0.01 + abs(.))$
normalization	mean-var. per-c	hannel per-sentence

400 samples width \equiv 25 ms

Instance Normalisation

- MVN per channel per utterance
- For Gammatone-based models
 - Critical, Faster convergence, Stabilises training
- For Scattering-based models
 - Minor effect, Y? Scaling func.
 - Slightly faster convergence



Experimental Setup

- Framework: End-to-End, WSJ
- Toolkit: Wav2letter \rightarrow Facebook toolkit for E2E ASR
- Training: SI284, Dev: Nov93-dev, Test: Nov92-eval
- Performance measure: WER and LER
- Architecture: 16 layers CNN with GLU (Gated Linear Unit)
 - GLU: halves #output-channels (half act as gate)
- LM for WER \rightarrow standard 4-gram built on WSJ LM data

Initialisation & Low-pass Filter Effect

- Gamma & Scatt outperform mel-fbank
- Initialisation effect (Nov92-Eval)
 - $GT \rightarrow GT$ init better than rand
 - $SC \rightarrow$ rand init better than Gabor/Mel
- Low-pass effect (Nov92-Eval)
 - $GT \rightarrow Han$ -fixed better than max-pool
 - $SC \rightarrow Han$ -fixed better than Han-learnt

FRONT	FILTER	LOW-	NOV9	3-dev	NOV9	2-eval
END	INIT	PASS	LER	WER	LER	WER
mel-			6.9	9.5	4.9	6.6
fbanks						
	aamm	Han-fixed	6.9	9.1	4.9	5.9
gamm	gamm	max-pool	7.2	9.3	4.9	6.0
(learnt)	rand	Han-fixed	7	8.9	4.9	5.9
Tanu	Tanu	max-pool	7.2	9.2	5.1	6.3
	a.a.a.tt	Han-fixed	6.7	8.3	4.6	6.1
scatt	scatt	Han-learnt	6.7	8.9	4.5	6.3
(learnt)	mand	Han-fixed	6.8	8.5	4.7	5.7
* *	rand	Han-learnt	6.9	8.9	4.9	5.8
			D	ev	E	val

Effect of Learning Pre-emphasis

- Pre-emphasis filter
 - FIR, 2 taps [-0.97, 1], highpass
 - Conv layer, kWidth=2, Stride=1
 - Learn it; init with [-0.97, 1]
- Helpful for both GT and SC
 - GT → 0.1 0.2
 - SC $\rightarrow -0.4 0.4$

MODEL	PRE-EMP	NOV9 LER	3-dev WER	NOV92 LER	2-eval WER
gamm (learnt)	no pre-emp pre-emp	6.9 6.8	$9.1 \\ 9$	$4.9 \\ 4.7$	$5.9 \\ 5.7$
scatt (learnt)	no pre-emp pre-emp	$6.7 \\ 6.5$	$8.3 \\ 8.7$	$\begin{array}{c} 4.6 \\ 4.5 \end{array}$	$6.1 \\ 5.7$
		Г)ev	F	val

Effect of Learning Pre-emphasis

- Pre-emphasis filter
 - FIR, 2 taps [-0.97, 1], highpass
 - Conv layer, kWidth=2, Stride=1
 - Learn it; init with [-0.97, 1]
- Helpful for both GT and SC
 - $GT \rightarrow 0.1 0.2$
 - SC \rightarrow -0.4 0.4
- WER & LER correlation can be < 0

MODEL	PRE-EMP	NOV9 LER	3-dev WER	NOV92 LER	2-EVAL WER
gamm (learnt)	no pre-emp pre-emp	6.9 6.8	$9.1 \\ 9$	4.9 4.7	$5.9 \\ 5.7$
scatt (learnt)	no pre-emp pre-emp	$6.7 \\ 6.5$	$8.3 \\ 8.7$	$\begin{array}{c} 4.6 \\ 4.5 \end{array}$	$6.1 \\ 5.7$
		Cor	r < 0	Cor	r > 0

 $Corr < 0 \qquad Corr > 0$

ACOUSTIC MODEL ADAPTATION FROM RAW WAVEFORMS WITH SINCNET

Joachim Fainberg, Ondřej Klejch, Erfan Loweimi, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, United Kingdom

E. Loweimi

- Raw waveform acoustic model adaptation
 - Adapt parameters of Sinc layer, i.e. f_c and BW
 - Compared with VTLN and LHUC
- How:
 - Trained on adult (AMI-ihm), 100 hours, meeting speech
 - Adapted to children (PF-STAR), 14 hours, read speech

SincNet Adaptation vs VTLN

- Parameters
 - VTLN $\rightarrow f_{warping}(\omega, \alpha) \leftarrow 1 param$
 - SincNet \rightarrow f_c & BW \leftarrow 2#filters
- Domain
 - SincNet ↔ time
 - VTLN \leftrightarrow frequency
- Learn $f_{_c}$ & BW vs grid search for α

Note*: In HTK $\alpha > 1 \equiv$ stretch.

8000 Stretch* (male) (ZH) 6000 Warped frequency 4000 Compression (female) 20000 2000 4000 6000 8000 Frequency (Hz)

Warping function:

- Exp: piece-wise linear, bilinear, etc.
- Characterised by α

E. Loweimi

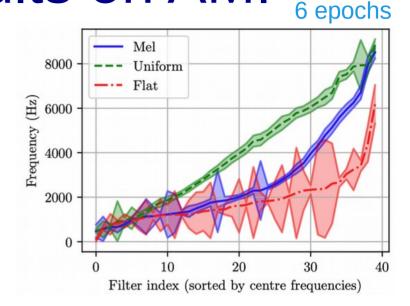
Experimental Setup

- Architecture:
 - Sinc (40 filters) + 6L 1D CNN
 - 9M parameters
- Optimiser:
 - Adam, Ir=0.0015
- Frame \rightarrow 200ms / 10ms
- Implementation:
 - Keras + TF
- LM interpolation of AMI (KN-
- 3gram+Fisher) and PF-STAR_{E. Loweimi}

#	Туре	Dim	Size	Dil	Params
1	SincConv	40	129	-	80
-	MaxPooling	-	3	-	
2	BN(ReLU(Conv))	800	2	1	68,000
-	MaxPooling	-	3	-	
3	BN(ReLU(Conv))	800	2	3	1,284,000
-	MaxPooling	-	3	-	
4	BN(ReLU(Conv))	800	2	6	1,284,000
-	MaxPooling	-	3	-	
5	BN(ReLU(Conv))	800	2	9	1,284,000
-	MaxPooling	-	2	-	
6	BN(ReLU(Conv))	800	2	6	1,284,000
7	ReLU(Conv)	800	1	1	640,800
8	Softmax(Conv)	3976	1	1	3,184,776

Experimental Results on AMI

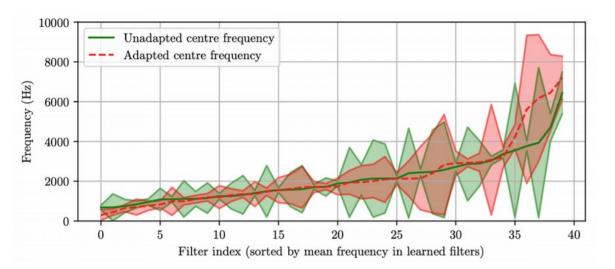
- Filter initialisation
 - Mel
 - Flat (uniform, not random)
 - Uniform (random)
- Similar WER **BUT** markedly different learned *f_c* & *BW*



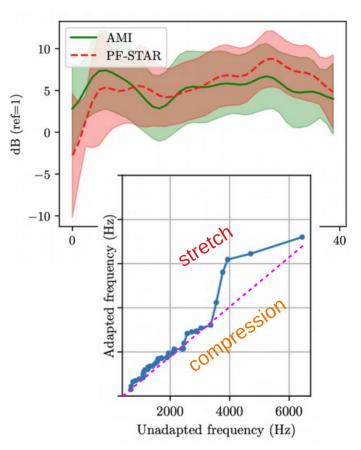
Initialisation	Eval	Dev
Mel	30.6	28.0
Flat	30.2	28.0
Uni	30.3	27.9

Adapted Sinc Layer (filterbank)

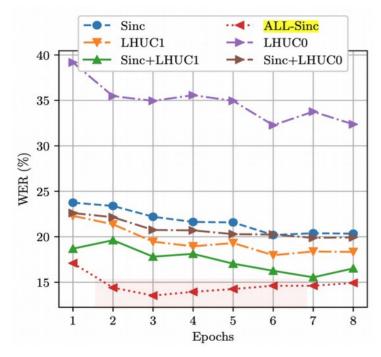
E. Loweimi



- Adaptation from Adult to Children ...
 - involves spectrum stretch, i.e $f_{adapted} > f_{unadapted}$
 - more energy in high frequencies



ASR Results



- LHUC adapts the filter gain
- All-Sinc prune to overfitting

Method	WER (%)	Params	
Unadapted	59.06	-	
Sinc	20.34	80	
LHUC0	32.37	40	
Sinc+LHUC0	19.93	120	
LHUC1	18.33	800	
Sinc+LHUC1	16.52	880	
ALL-Sinc	14.92	$\sim 9 { m M}$	

– LHUC0: LHUC on Sinc layer

- Sinc+LHUC0: Adapt Sinc + LHUC0
- ALL-Sinc: all param, excluding sinc

Wrap-up

- Parametric CNN
 - Allows for embedding prior info in the network
 - Can improve the performance, even for small tasks
 - Faster convergence with fewer data
- Future work

. . .

- Further E2E, Raw waveform + RNNs
- Raw waveform + Unsupervised
- Dynamic/Evolution of the first layer during training

That's it!

- Thanks for Your attention
- Q/A

• Appendices

A1) Gammatone FilterbankA2) Denis Gabor ContributionsA3) CTCA4) VTLN

A1) Gammatone Filterbank

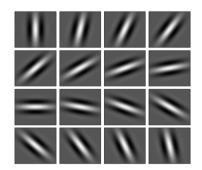
- **Structure**: A set of IIR bandpass filters, defined in time domain
- **Obtained** by *reverse correlation* from measurements of auditory nerve responses of cats
- **Parameter** k: gain, B: decay factor, f_c: centre freq (Hz), n: order
- $3 < n < 5 \rightarrow$ Good approximation for human auditory (Cochlea) filters
- f_c based on Greenwood or equal distance in a perceptual scale
- $\mathbf{B} \rightarrow$ Equivalent Rectangular Bandwidth (Hz)

$$\begin{aligned} h_i(t) &= k \ t^{n-1} \exp(-2\pi B_i t) \ \cos(2\pi f_i t + \phi) & f_i^{gw} = 165.4(10^{2.1x} - 1) \\ B_i &= 1.019 * 24.7(4.37 \ f_i / 1000 + 1) \\ & \text{E. Loweimi} & \text{A1/4} \end{aligned}$$

A2) Dennis Gabor's Contributions

- Electrical Engineer and Physicist
 - Hologram \rightarrow 1971 Nobel prize
- Signal Processing
 - Gabor-Heisenberg uncertainty principle ($\Delta t \Delta \omega \ge 0.5$)
 - Gabor filters
 - Texture analysis + perceptually motivated
 - Gabor Transform/Wavelet
 - FT + Gaussian window (1946) \rightarrow STFT
 - Gabor atoms $g_{t_0,\omega_0} = g(t t_0) \exp(j\omega_0 t)$

Dennis Gabor (1900-1979)



A2) Gabor Transform Limits

- Non-orthogonal family, though forms a *frame*
 - Complete but redundant
- Well-localised but infinite support
 - Truncation
- Gabor pair is not precisely quadrature
 - Because of DC component of even part
 - BUT approximately, it is

A3) **C**onnectionist **T**emporal **C**lassification

- CTC is a special output layer for Seq2Seq modes (RNNs)
- Handles $Y_{len} != X_{len}$; Y_{len} should be shorter
- Does not require lexicon and $X \rightarrow Y$ alignment
- Blank symbol \rightarrow to handle all possible alignments
- Learned-based on likelihood (CE)
- Loss efficiently computable using forward/backward algorithms
- Decoding \rightarrow beam search + Dynamic Programming
- Disadvantages
 - _ Conditional-independence assumption, i.e $y_{t} \parallel y_{t-1} \mid X$

- Does not *explicitly* model inter-label dependencies E. Loweimi

A4) Vocal Tract Length Norm. (VTLN)

- VT Length (VTL) variation shifts formants, almost linearly
 - Female speakers, shorter VTL => larger formants
 - Adaptation for female to standard spk \rightarrow compress spectrum, i.($\tilde{f} < f$
- VTLN HOW:
 - Choose warping function, e.g. piece-wise linear, bilinear
 - Find the warping factor
 - 1. First pass recognition
 - 2. Forced-alignment for all warping factors (grid search)
 - 3. Select factor with max likelihood
 - 4. Second pass recognition after applying optimal warping factor
- Effective when speakers clearly identifiable, e.g telephone speech

