

Raw Waveform Modelling for ASR A Literature Review Part III

Erfan Loweimi

Centre for Speech Technology Research (CSTR) The University of Edinburgh Listen! 12.2.2020

Raw Waveform Acoustic Modelling

- Divide-and-conquer paradigm may not be needed ...
 - Solve feature extraction & AM problems simultaneously
- Advantages
 - Task-specific features, employ all info, learn basis functions, mid-term processing, do not need exact alignment
- Challenges
 - Learning in High-dim feature, discard prior knowledge, ...

Part I – Summary

- Conventional features are still better
- Architecture is important (CNN rather than MLP)
- Data amount and activation function can narrow the gap
- Interpretability
 - First layer \rightarrow time-frequency analysis
 - Second layer \rightarrow modulation spectrum processing
 - Filters resemble auditory filters
 - More filters in low freq, wider filters in high frequencies (trend-wise)

Part II – Summary

- Baidu \rightarrow Multi-resolution CNNs
- JHU \rightarrow NIN + iVector + Normalisation + Data augment
- Cambridge \rightarrow Multi-Span CNNs
- Google \rightarrow CLDNN Acoustic Modelling
 - CNN + LSTM + MLP
 - Goal: super-additive combination

Our Plan ...

HAACHEN

- Part I → IDIAP + AACHEN
- Part II → Multi-Resolution + Google
- Part III → Google
- Part IV → Parametric CNNs

Learning the Speech Front-end With Raw Waveform CLDNNs

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, Oriol Vinyals

Google, Inc. New York, NY, U.S.A

{tsainath, ronw, andrewsenior, kwwilson, vinyals}@google.com

Raw waveform CLDNN

- tConv \rightarrow conv in time
- fConv \rightarrow conv in freq
- LSTM: dynamic modelling
- DNN: abstraction
 - 1 FC layer with 1024 units
- Output of tConv, x_t , is passed to fConv without temporal context \rightarrow "... not to help on larger data sets."

Convolution in time \rightarrow tConv

- tConv layer consists of
 - bank of bandpass FIR filters
 - pooling + non-linearity
- Feature maps \equiv "frequency"
- Feature size
 - $-1 \times M \rightarrow M-N+1 \times P \rightarrow 1 \times P$
- Non-linearity: log(ReLU(.) + 0.01)
- Output \equiv CRBE

5/42

Experimental Results

- Frame length, M: $25 \rightarrow 35ms$
 - 3.5 abs WER reduction
- Gammatone (GT) init.
 - WER_{GT} = WER_{random} 0.2
 - If frozen => $WER_{GT} = WER_{random}$
- Max-Pooling → lower WER
 - "… MaxP emphasises transients … pnorm and AveP smooth out …"

N is fixed in 25ms

Filter	Window	Init	WER
Size (N (ms))	Size (M (ms))		
400 (25ms)	400 (25ms)	random	19.9
400 (25ms)	560 (35ms)	random	16.4
400 (25ms)	560 (35ms)	gammatone	16.2
400 (25ms)	560 (35ms)	gammatone	16.4
		untrained	

Method	WER
max	16.2
l_2	16.4
average	16.8

data: ~ 2000 h MTR

Raw vs Log-Mel Features

- Equal performance for
 - $C_1L_3D_1$, $C_1L_2D_1$, L_3D_1
 - Best WER \rightarrow C₁L₃D₁
- Fbank better for $C_1L_1D_1 \& D_6$
 - Dynamics modelling Capacity(?)

$C_x L_y D_z \rightarrow x, y, z \# layers$				
Feature	Model	WER		
log-mel	C1L3D1	16.2		
raw	C1L3D1	16.2		
log-mel	L3D1	16.5		
raw	L3D1	16.5		
raw	L3D1, rand init	16.5		
log-mel	C1L2D1	16.6		
raw	C1L2D1	16.6		
log-mel	C1L1D1	17.3		
raw	C1L1D1	17.8		
log-mel	D6	22.3		
raw	D6	23.2		

– data: ~ 2000 h MTR

Raw always has tConv 7/42

Raw vs Log-Mel Features

- Clean vs Noisy
 - test matched
 - Clean \rightarrow Slightly better
- raw+log-mel is super-additive
- Effect of data amount
 - No clear trend! Similar WER
- Seq training is better than CE

Training Set	Feature	WER - CE	WER - Seq
Clean	log-mel	14.0	12.8
Clean	raw	13.7	12.7
MTR	log-mel	16.2	14.2
MTR	raw	16.2	14.2

data: ~ 2000 h

Feature	WER - CE	WER - Seq
raw	16.2	14.2
log-mel	16.2	14.2
raw+log-mel	15.7	13.8

Hrs	WER-raw	WER-log-mel
666	18.8	18.4
1,333	17.1	17.3
2,000	16.2	16.2
40,000	15.5	15.4

Filter Interpretation

- Similar to auditory filters
 - * BW increases with f_c (trend-wise)
 - * More filters in low freq \rightarrow higher resolution and selectivity
- Clean vs Noisy
 - * For noisy more filters in high frequencies

Filter Interpretation

SPEECH ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Yedid Hoshen¹, Ron J. Weiss², and Kevin W. Wilson²

¹Hebrew University of Jerusalem, Jerusalem, Israel ²Google Inc, New York, NY, USA ydidh@cs.huji.ac.il, {ronw,kwwilson}@google.com

SPEAKER LOCATION AND MICROPHONE SPACING INVARIANT ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani and Andrew Senior

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel, andrewsenior}@google.com

FACTORED SPATIAL AND SPECTRAL MULTICHANNEL RAW WAVEFORM CLDNNS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel}@google.com

ASRU 2015 IEEE Automatic Speech Recognition and Understanding Workshop December 13-17, 2015 Scottsdale, Arizona - USA

A Brief Review of Beamforming

Beamforming ≡ Spatial Filtering

- Delay-and-Sum (DaS)
 - Delay \equiv align (synchronise)
 - $\tau \leftarrow \theta \leftarrow$ Localisation
- Filter-and-Sum (FaS)
 - Y? beam pattern shaping, etc.

$$y[t] = \sum_{m=1}^{M} h_m[t] * x_m[t - \tau_m]$$
$$\tau_m = (m-1) \frac{d\cos\theta}{v}$$
E. Loweimi

Some BeamForming Jargon ...

- TDoA, DOA, Steering vector, Null
- Broadside, Aperture, Azimuth, Elevation
- Spatial freq, Nyquist sampling, Resolution
- Uniform Linear Array (ULA)
- SINR, MVDR
- narrowband assumption
- Far-field, Near-field
- BF domain; time or frequency?

60°

MVDR Beamforming

- Minimum Variance Distortionless Response ٠
- Goal: minimise SINR
- IDEAL solution requires ... •
 - Desired signal direction, θ_s
 - Interference and noise corr mat, R_{i+n}
- PRACTICAL: Recursive + Est R_{i+n}
 - Training data
 - Diagonal loading

 $\mathbf{s}(t) = s(t)\mathbf{a}(\theta_s)$ $\mathbf{a}(\theta_s) = [1, e^{-j\omega_c \tau_2}, \dots, e^{-j\omega_c \tau_M}]^T$ $\mathbf{y}(t) = \mathbf{w}^H \mathbf{x}(t)$ $SINR = \frac{\mathbb{E}\{|\mathbf{w}^H\mathbf{s}|^2\}}{\mathbb{E}\{|\mathbf{w}^H(\mathbf{i}+\mathbf{n})|^2\}} = \frac{\sigma_s^2|\mathbf{w}^H\mathbf{a}(\theta_s)|^2}{\mathbf{w}^H\mathbf{B}+\mathbf{w}}$ $\mathbf{w}^* = \operatorname{argmin} \mathbf{w}^H \mathbf{R}_{i+n} \mathbf{w}$ s.t. $\mathbf{w}^H \mathbf{a}(\theta_s) = 1$ $\mathbf{w}^* = \alpha \ \mathbf{R}_{n+i}^{-1} \ \mathbf{a}(\theta_s)$

 $\mathbf{x}(t) = \mathbf{s}(t) + \mathbf{i}(t) + \mathbf{n}(t)$

BeamForming for Far-field ASR

- Classic approach \rightarrow Signal Processing
 - Localisation + Beamforming + post-filtering + Acoustic Modelling
 - Done independently
- Modern approach \rightarrow Learning + DNN
 - GMM-HMM framework
 - Seltzer et al, LIMABEAM (LIkelihood-Maximising BEAMforming), 2004
 - Neuro BF
 - Swietojanski et al, CNNs for DSR, 2014
 - Hoshen et al, Google, 2015
 - Tara Sainath et al, Google, $2015 \rightarrow 2017$

Pawel Swietojanski, Student Member, IEEE, Arnab Ghoshal, Member, IEEE, and Steve Renals, Fellow, IEEE

Distant Speech Recognition

- Using CNN for BF & AM*
- BeamForming ullet
 - 1) Channel-wise Conv
 - filters tied across channels
 - 2) Two-way pooling
 - 2.1) Cross-channel pooling
 - 2.2) cross-band pooling

- DNN \rightarrow Fbank, 6 H Layers, 2048, Sigmoid - CNN \rightarrow Conv + 5L-DNN, J=128, F=9, L=1

SPEECH ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Yedid Hoshen¹, Ron J. Weiss², and Kevin W. Wilson²

¹Hebrew University of Jerusalem, Jerusalem, Israel ²Google Inc, New York, NY, USA ydidh@cs.huji.ac.il, {ronw,kwwilson}@google.com

SPEAKER LOCATION AND MICROPHONE SPACING INVARIANT ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani and Andrew Senior

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel, andrewsenior}@google.com

FACTORED SPATIAL AND SPECTRAL MULTICHANNEL RAW WAVEFORM CLDNNS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel}@google.com

ASRU 2015 IEEE Automatic Speech Recognition and Understanding Workshop December 13-17, 2015 Scottsdale, Arizona - USA

SPEECH ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Yedid Hoshen¹, Ron J. Weiss², and Kevin W. Wilson²

¹Hebrew University of Jerusalem, Jerusalem, Israel ²Google Inc, New York, NY, USA ydidh@cs.huji.ac.il, {ronw,kwwilson}@google.com

IDEA and Contribution

- Single-channel & Multi-channel Raw waveform AM
- Multi-channel
 - Joint AM & Localisation + Beamforming
- First Conv layer
 - Joint Spatial and Spectral filtering
- Advantage over log-mel feature
 - Phase information \rightarrow better localisation & Beamforming

Architecture

Experimental Results

- Frame Blocking, 275ms, 10 ms hopping, fbank \rightarrow 40D, 26 stacked frames
- Conv layer \rightarrow time-freq analysis, F x M x 25ms (F: #filters=40, M: #mics=2)
- Rectification and max-pooling (across time, separately for each filter over a window of 25 ms hopped by 10 ms
- Compressive non-linearity $\rightarrow \log(. + 0.01)$
 - 0.01 offset \rightarrow Numerical stability, dynamic range compression
- MLP \rightarrow Fully-connected, 4 layers with 640 ReLU units
- Softmax nodes \rightarrow 13568 tied CD state unites
- Training data normalised to have zero mean and unit variance
- data: 400/36 hours for train/test, clean, Google Voice Search
- Optimisation: ASGD, Adagrad with 0.01 learning rate, batch size: 100, #epochs: 13

Setup – Training data

- Data: Voice Search + noise (YouTube) + room simulator
- Clean: Train: 400 h; testset: 36 h
- Fixed: clean + room simulator
 - additive noise (5--25dB) and reverb (RT_{60} < 400ms)
- Varied: speakers position is varied
 - Target speaker: Rand $\pm 5^{\circ}$ of broadside
 - Noise direction: Rand ±90°

Single-Channel System

- Log-mel is better (~2.0% abs)
- WER_{rand-init} \approx WER_{GT-init-train}
- WER_{GT-init-train} < WER_{GT-init-fixed}
 - ~ 1.5% abs
- Removing log hurts (~ 1.5% abs)
 - Dynamic range compression is useful

Model	Clean	Fixed	Varied
Mel-fb DNN	25.6%	39.8%	39.5%
Waveform CNN	27.2%	41.6%	41.5%
Waveform CNN			
mel gammatone fixed	28.8%	43.6%	43.5%
Waveform CNN			
mel gammatone init	27.1%	41.7%	41.5%
Waveform CNN no log	28.5%	43.0%	42.9%

For single-channel the Fixed and Varied are very similar ... – same distance, different angle

Learned Filters – Single Channel

- Centre frequency = argmax {Magnitude Spectrum}
- Loosely auditory-like filters
 - * BW increases by f_c & more filters in low frequencies

Learned Filters – Multi (2) Channel

- Spatial and spectral filtering
- Learned filters per channel
 - Bandpass
 - Some are multi modal
 - Similar h, different t_d
 - Steer null in noise dir

Learned Filters – Multi Channel

• Brainogram ≡ CRBE

- log-mel vs brainogram
 - Noise suppression ...
 - Steering null

Multi-Channel with Geometry Mismatch

 Matched → raw is better than fbank

Model	Train set	Fixed	Varied
Stacked mel-fb DNN	Fixed	39.2%	39.3%
Stacked mel-fb DNN	Varied	39.0%	38.9%
Waveform CNN	Fixed	37.5%	52.0%
Waveform CNN	Varied	38.4%	38.1%
Beamformer mel-fb DNN	Fixed	35.9%	36.6%
Beamformer mel-fb DNN	Varied	36.0%	36.3%

Features: fbank, waveform, fbank+BF Matched: fixed vs fixed or varied vs varied Mismatched: fixed vs varied Beamformer log-mel: Delay-and-Sum

[®]Multi-Channel with Geometry Mismatch

- **Matched** \rightarrow raw is better
- Mismatch → depends ...
 - Fixed-Varied \rightarrow very poor
 - Var-Fix \rightarrow better than mel-log

Model	Train set	Fixed	Varied
Stacked mel-fb DNN	Fixed	39.2%	39.3%
Stacked mel-fb DNN	Varied	39.0%	38.9%
Waveform CNN	Fixed	37.5%	52.0%
Waveform CNN	Varied	38.4%	38.1%
Beamformer mel-fb DNN	Fixed	35.9%	36.6%
Beamformer mel-fb DNN	Varied	36.0%	36.3%

- Features: fbank, waveform, BF+fbank
- Matched: fixed vs fixed or varied vs varied
- Mismatched: fixed vs varied
- BF+fbank: Delay-and-Sum

Multi-Channel with Geometry Mismatch

- Matched → raw is better
- Mismatch → depends ...
 - Fixed-Varied \rightarrow very poor
 - Var-Fix \rightarrow better than mel-log
- BeamForming helps Mel-fb
 - WER improvement ~ 3-4 %
 - Oracle D+S min mismatch effect

Model	Train set	Fixed	Varied
Stacked mel-fb DNN	Fixed	39.2%	39.3%
Stacked mel-fb DNN	Varied	39.0%	38.9%
Waveform CNN	Fixed	37.5%	52.0%
Waveform CNN	Varied	38.4%	38.1%
Beamformer mel-fb DNN	Fixed	35.9%	36.6%
Beamformer mel-fb DNN	Varied	36.0%	36.3%

- Features: fbank, waveform, BF+fbank
- Matched: fixed vs fixed or varied vs varied
- Mismatched: fixed vs varied
- BF+fbank: Delay-and-Sum

SPEAKER LOCATION AND MICROPHONE SPACING INVARIANT ACOUSTIC MODELING FROM RAW MULTICHANNEL WAVEFORMS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani and Andrew Senior

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel, andrewsenior}@google.com

tConv: Neuro Beamformer (BF)

- No need to localisation
 - Delay absorbed in weights!
- P filters per channel are learned
 - P look directions ($\theta_{1:P}$)

$$y^{p}[t] = \sum_{c=0}^{C-1} h^{p}_{c}[t] * x_{c}[t]$$

tConv: Neuro Beamformer (BF)

- Parameters
 - #channels_in: C; #channels_out: P
 - #fitler_len: N
- Structure + Size change
 - Conv per ch per p \rightarrow M-N+1 x P x C
 - Sum across channels \rightarrow M-N+1 x P
 - Max-pooling \rightarrow 1 x P
 - NonLin \rightarrow Log(ReLU(.) + 0.01)

M: input length in samples

Single-Channel

- Effect of #filters (P)
 - Larger P \rightarrow lower WER
 - RWERR [$40 \rightarrow 128$]: mel:3.2%; raw: 4.9%
- More filters operating in low frequencies
 - Centre freq ≈ argmax freq response

2000 h, Voice Search

# of Filters (P)	log-mel	raw waveform
40	25.2	24.7
84	25.0	23.7
128	24.4	23.5

M=35ms; N=25ms; P: 128

Single-Channel – Noisy Condition

- Distortion type
 - Additive (SNR) \rightarrow slightly better
 - Reverberation $(T_{60}) \rightarrow$ better
 - Far-field (distance) \rightarrow better

Single vs Multi-Channel

- More channels is better
 - Spatial filtering with higher resolution

- Raw outperforms log-mel
 - Time info
 - Phase spec \rightarrow delay est

Feature	1ch	2ch (14cm)	4ch (4-6-4cm)	8ch (2cm)
log-mel	24.4	22.0	21.7	22.0
raw	23.5	21.8	21.3	21.1

Multi-channel

Single vs Multi-Channel

- More channels is better
 - Saturation after 4

- Distortion type
 - Additive: 2-6% better (abs)
 - Reverberation (T₆₀) \rightarrow 2-3%
 - Far-field (distance) \rightarrow ~ 3%

Comparison with Oracle Experiments

- Raw waveform systems:
 - D+S: Align w/ oracle delay \rightarrow sum \rightarrow single-channel
 - TAM: Align w/ oracle delay \rightarrow multi-channel
 - Raw, no tdoa: neuro-beamforming
- Neuro-BF w/o localisation
 - Outperforms oracle D+S!
 - Similar to TAM
 - Delay is not important!

Feature	1ch	2ch (14cm)	4ch (4-6-4cm)	8ch (2cm)
D+S, tdoa	23.5	22.8	22.5	22.4
TAM, tdoa	23.5	21.7	21.3	21.3
raw, no tdoa	23.5	21.8	21.3	21.1

Learned Filters – 2-channel

- Simultaneous Spatial and Spectral filtering
- Ch₀ vs Ch₁ Similar & delayed
 - Steering a null
 - Delay ≡ Direction
- Larger BW for high f_c

Geometric Mismatch; 2-channel

- Geometric mismatch experiments
 - Trained on 14 cm mic spacing
 - Test with 14, 10, 6, 2 cm
- D+S \rightarrow stable performance
 - Does not see the mismatch
- TAM & raw \rightarrow stable except for 2cm
 - Handle reasonable mismatch
 - Train on 14, train on 2cm \rightarrow strong mismatch

Method

raw, 1ch

14cm

23.5

10cm

23.5

23.2

22.1

22.2

2cm

23.5

23.7

30.6

30.7

6cm

23.5

23.3

23.2

23.3

32/42

Multi-Geometric Training (MGT)

- MGT to deal with geometric mismatch
- System well handles 2-14cm spacing
- Works w/o delay knowledge!
 - Outperforms single-channel!

Method	14cm	10cm	6cm	2cm
raw, 2ch	21.8	22.2	22.3	30.7
raw, 2ch, multi-geo	21.9	21.7	21.9	21.8

Method	1ch, repeated twice
raw, 1ch	23.5
raw, 2ch	33.9
raw, 2ch, multi-geo	23.1

Learned Filters – Multi-Geo

- No longer exhibit strong spatial response
 - max@f_c min@f_c > 6dB
 - No null
- Larger BW for high f_c ?

FACTORED SPATIAL AND SPECTRAL MULTICHANNEL RAW WAVEFORM CLDNNS

Tara N. Sainath, Ron J. Weiss, Kevin W. Wilson, Arun Narayanan, Michiel Bacchiani

Google, Inc., New York, NY, USA {tsainath, ronw, kwwilson, arunnt, michiel}@google.com

Factorised Neuro-Beamformer

Unfactorised

- tConv: Simultaneous spatial and spectral filtering
- Pooling + Non-linearity

• Factorised

- Intuition: Factor out spectral and spatial filtering
 - tConv1 \rightarrow spatial
 - tConv2 \rightarrow spectral
 - Pooling + Non-linearity

Factorised Neuro-Beamformer

• Unfactorised

- tConv: Simultaneous spatial and spectral filtering
- Pooling + Non-linearity

• Factorised

- Intuition: Factor out spectral and spatial filtering
 - tConv1 \rightarrow spatial & spectral
 - tConv2 \rightarrow spectral
 - Pooling + Non-linearity

Factorised vs Unfactorised Model

Unfactorised: simultaneous Spectral and spatial filtering

Factorised vs Unfactorised Model

Unfactorised: simultaneous Spectral and spatial filtering

36/42

Factorised Model – Parameters

- M: input length (560)
- C: #channels (mic) = 2
- N: tConv1 filter len (80)
- P: tConv1 #filters
- g: tConv2
- L: tConv2 filter len (400)
- F: tConv2 #filters (128)
- NonLin: log (ReLU(.) + 0.01)

36/42

Factorised vs Unfactorised Model

- tConv1: M = 560 samples [35ms], N=80 [5ms], tConv2: F=128, L=400,
- Filter size (N) and #filters (P) is much smaller in tconv1
 - Small N \rightarrow broadband response \rightarrow less spectral resolution
 - Small P \rightarrow a few spatial look directions
- Nonlin+pooling ONLY after tconv2, not tconv1
- Same vs Valid convolution types
- Feature dim: $x_t \in \mathbb{R}^{1 \times F \times P} \times x_t \in \mathbb{R}^{1 \times P}$
- tConv2
 - Longer-duration (better freq resolution), Single-channel filters
 - Filters \in RLxFx1, shared across P input feature maps
 - Convolution type: Valid => output $R^{M-L+1xFxP} \rightarrow pooling \rightarrow x_t \ln R^{1xFxP}$

Factorised vs Unfactorised Model

Factorised

- Spatial Behaviour
 - * wider beams + strong spatial response
 - * steering null

Unfactorised

– Spectral Behaviour

* multi-modal with different BWs

Experimental Results

- Factored vs Unfactored
 - 6.4% RWERR
- Higher $P \rightarrow \text{lower WER}$
 - $P \le 10$ Comp. Complexity
- tConv1
 - Trained vs fixed:
 - 4.6% RWERR

# Spatial Filters P	WER
baseline 2 ch, raw [1]	21.8
1	23.6
3	21.6
5	20.9
10	20.4

# Spatial Filters P	tConv1 Layer	WER
5	fixed	21.9
5	trained	20.9

Fixed: oracle D+S

MTL on Unfactored Model

- Speech Enhancement via DNNs
 - Auto-Enc, TF mask, MTL, etc.
- Multi-Task Learning (MTL)
 - ASR predicts CD states
 - Denoising predicts clean log-mel
 - Loss = αCE_{ASR} + (1- α) MSE_{Enh}
 - Here, α = 0.9

MTL on Unfactored Model

- Speech Enhancement via DNNs
 - Auto-Enc, TF mask, MTL, etc.
- Multi-Task Learning (MTL)
 - ASR predicts CD states
 - Denoising predicts clean log-mel
 - Loss = αCE_{ASR} + (1- α) MSE_{Enh}
 - Optimal branch position ???

MTL Optimal Position

- Higher layers better!
 - After 1LSTM or DNN is optimal
 - Why?
- Max gain (RWERR)
 - 1 Ch \rightarrow 3.8%
 - 2 Ch \rightarrow 5.0 %

Unfactored	model
01114010104	11100001

Denoising task branching layer	1 channel	2 channel
no MTL [1]	23.5	21.8
tConv	23.2	21.7
fConv	23.2	21.8
1LSTM	22.6	20.7
DNN	22.6	20.7

- * MTL after ...
 - -- tConv
 - -- fConv
 - -- 1LSTM: 1st LSTM layer
 - -- DNN (just before output layer)

Training \rightarrow CE vs Seq

- D+S \rightarrow oracle delay
- MVDR → oracle delay and noise/speech cov mat
 - Optimal in SINR
- Neuro-BF outperforms MVDR!
- MTL gain for factored: 2%

Method	CE	Seq
log-mel, 1 channel	25.2	20.7
raw, 1 channel	23.5	19.2
delay-and-sum, 8 channel	22.4	18.8
MVDR, 8 channel	22.4	18.7
unfactored raw, 2 channel [1]	21.8	18.2
factored raw, 2 channel	20.4	17.3
factored raw, 2 channel, MTL	20.0	17.0

2 Ch. P=10

Conclusion – Part 3

- Raw waveform outperforms log-mel in CLDNN AM
 - On 2000 h; min data amount for better perfomance?
- Neuro-beamforming
 - w/o localisation, outperforms MVDR with oracle info
 - Unfactorised: simultaneous Spectral & Spatial filtering
 - Factorised: dissociates spectral and spatial filtering
- MTL \rightarrow ASR + Enhancement \rightarrow branch at high levels \rightarrow helps

That's It!

- Thanks for Your Attention!
- Q & A

- Next Session:
 - Parametric CNNs for Raw waveform AM

