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Raw Waveform Acoustic Modelling
● Divide-and-conquer paradigm may not be needed ...

– Solve feature extraction & AM problems simultaneously

● Advantages
– Task-specific features, employ all info, learn basis functions, 

mid-term processing, do not need exact alignment

● Challenges
– Learning in High-dim feature, discard prior knowledge, ...
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Part I – Summary
● Conventional features are still better
● Architecture is important (CNN rather than MLP)
● Data amount and activation function can narrow the gap
● Interpretability

– First layer → time-frequency analysis
– Second layer → modulation spectrum processing
– Filters resemble auditory filters

● More filters in low freq, wider filters in high frequencies (trend-wise)
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Part II – Summary
● Baidu → Multi-resolution CNNs
● JHU → NIN + iVector + Normalisation + Data augment
● Cambridge → Multi-Span CNNs
● Google → CLDNN Acoustic Modelling

– CNN + LSTM + MLP
– Goal: super-additive combination
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Our Plan ...
● Part I → IDIAP + AACHEN
● Part II → Multi-Resolution + Google
● Part III → Google  
● Part IV → Parametric CNNs
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Raw waveform CLDNN
● tConv → conv in time
● fConv → conv in freq
● LSTM: dynamic modelling
● DNN: abstraction 

– 1 FC layer with 1024 units

● Output of tConv, xt, is passed to fConv without temporal 
context → “... not to help on larger data sets.”
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Convolution in time → tConv
● tConv layer consists of 

– bank of bandpass FIR filters
– pooling + non-linearity

● Feature maps ≡ “frequency”
● Feature size

– 1 x M → M-N+1 x P → 1 x P

● Non-linearity: log(ReLU(.) + 0.01) 

● Output ≡ CRBE
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Experimental Results
● Frame length, M: 25→ 35ms 

– 3.5 abs WER reduction
 

● Gammatone (GT) init.
– WERGT = WERrandom - 0.2

– If frozen => WERGT = WERrandom

 

● Max-Pooling → lower WER
– “… MaxP emphasises transients ... p-

norm and AveP smooth out ...”
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N is fixed in 25ms
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Raw vs Log-Mel Features
● Equal performance for

– C1L3D1, C1L2D1, L3D1

– Best WER → C1L3D1

 

● Fbank better for C1L1D1 & D6

– Dynamics modelling 
Capacity(?)
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Raw vs Log-Mel Features
● Clean vs Noisy

– test matched
– Clean → Slightly better

● raw+log-mel is super-additive
● Effect of data amount

– No clear trend! Similar WER

● Seq training is better than CE
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Filter Interpretation

– Similar to auditory filters 
      * BW increases with f

c
 (trend-wise)

          
* More filters in low freq → higher resolution and selectivity

 

– Clean vs Noisy
* For noisy more filters in high frequencies
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A Brief Review of 
Beamforming
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Beamforming ≡ Spatial Filtering
● Delay-and-Sum (DaS)

– Delay ≡ align (synchronise)

– τ ← θ ← Localisation

● Filter-and-Sum (FaS)
– Y? beam pattern shaping, etc.
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Some BeamForming Jargon ...
● TDoA, DOA, Steering vector, Null

● Broadside, Aperture, Azimuth, Elevation

● Spatial freq, Nyquist sampling, Resolution

● Uniform Linear Array (ULA) 

● SINR, MVDR 

● narrowband assumption

● Far-field, Near-field

● BF domain; time or frequency?

Chapter 11
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MVDR Beamforming
● Minimum Variance Distortionless Response

● Goal: minimise SINR
 

● IDEAL solution requires ...

– Desired signal direction, θs 

– Interference and noise corr mat, Ri+n
 

● PRACTICAL: Recursive + Est Ri+n 

– Training data 

– Diagonal loading

 12/42E. Loweimi

Chapter 11



  

BeamForming for Far-field ASR
● Classic approach → Signal Processing

– Localisation + Beamforming + post-filtering + Acoustic Modelling
– Done independently

 

● Modern approach → Learning + DNN
– GMM-HMM framework

● Seltzer et al, LIMABEAM (LIkelihood-Maximising BEAMforming), 2004

– Neuro BF
● Swietojanski et al, CNNs for DSR, 2014
● Hoshen et al, Google, 2015
● Tara Sainath et al, Google, 2015→ 2017
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● Using CNN for BF & AM*

● BeamForming

1) Channel-wise Conv
● filters tied across channels

2) Two-way pooling

2.1) Cross-channel pooling

2.2) cross-band pooling – DNN → Fbank, 6 H Layers, 2048, Sigmoid
– CNN → Conv + 5L-DNN, J=128, F=9, L=1

Conventional

Proposed
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IDEA and Contribution
● Single-channel & Multi-channel Raw waveform AM
● Multi-channel

– Joint AM & Localisation + Beamforming

● First Conv layer
– Joint Spatial and Spectral filtering

● Advantage over log-mel feature 
– Phase information → better localisation & Beamforming
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Architecture

Windowing
(275ms, 10ms) CNN Max

Pooling MLP SoftmaxLog(.+ε)ReLU

brainogram
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M: #mics = 2
F: #filters = 40



  

Experimental Results
● Frame Blocking, 275ms, 10 ms hopping, fbank → 40D, 26 stacked frames
● Conv layer → time-freq analysis, F x M x 25ms (F: #filters=40, M: #mics=2)
● Rectification and max-pooling (across time, separately for each filter over a window 

of 25 ms hopped by 10 ms
● Compressive non-linearity → log(. + 0.01)

– 0.01 offset → Numerical stability, dynamic range compression

● MLP → Fully-connected, 4 layers with 640 ReLU units
● Softmax nodes → 13568 tied CD state unites
● Training data normalised to have zero mean and unit variance
● data: 400/36 hours for train/test, clean, Google Voice Search
● Optimisation: ASGD, Adagrad with 0.01 learning rate, batch size: 100, #epochs: 13
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Setup – Training data
● Data: Voice Search + noise (YouTube) + room simulator
● Clean: Train: 400 h;  testset: 36 h
● Fixed: clean + room simulator

– additive noise (5--25dB) and reverb (RT60 < 400ms)

● Varied: speakers position is varied
– Target speaker: Rand ±5º of broadside
– Noise direction: Rand ±90º
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Single-Channel System

● Log-mel is better (~2.0% abs)

● WERrand-init  ≈  WERGT-init-train 

● WERGT-init-train  <  WERGT-init-fixed

– ~ 1.5% abs

● Removing log hurts (~ 1.5% abs)

– Dynamic range compression is 
useful
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For single-channel the Fixed and 
Varied are very similar ...
    – same distance, different angle

x
x x



  

Learned Filters – Single Channel

– Centre frequency = argmax {Magnitude Spectrum}
    

– Loosely auditory-like filters
      * BW increases by f

c 
& more filters in low frequencies
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Learned Filters – Multi (2) Channel
● Spatial and spectral filtering

 

● Learned filters per channel 
– Bandpass

● Some are multi modal
 

– Similar h, different td

● Steer null in noise dir
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Learned Filters – Multi Channel

● Brainogram ≡ CRBE

● log-mel vs brainogram
– Noise suppression …

● Steering null

#filters = 80E. Loweimi  21/42



  

Multi-Channel with Geometry Mismatch

● Matched → raw is better 
than fbank
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Features: fbank, waveform, fbank+BF
Matched: fixed vs fixed or varied vs varied   
Mismatched: fixed vs varied 
Beamformer log-mel: Delay-and-Sum



  

Multi-Channel with Geometry Mismatch

● Matched → raw is better

● Mismatch → depends ...
– Fixed-Varied → very poor

– Var-Fix→better than mel-log
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– Features: fbank, waveform, BF+fbank
– Matched: fixed vs fixed or varied vs varied   
– Mismatched: fixed vs varied 
– BF+fbank: Delay-and-Sum



  

Multi-Channel with Geometry Mismatch

● Matched → raw is better

● Mismatch → depends ...
– Fixed-Varied → very poor

– Var-Fix→better than mel-log

● BeamForming helps Mel-fb
– WER improvement ~ 3-4 %

– Oracle D+S min mismatch 
effect
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tConv: Neuro Beamformer (BF)
● No need to localisation

– Delay absorbed in weights!

● P filters per channel are learned
– P look directions (θ1:P) 
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CLDNN

M: input len    N: filter len
P: #filters        C: #channels



  

tConv: Neuro Beamformer (BF)
● Parameters

– #channels_in: C; #channels_out: P

– #fitler_len: N
 

● Structure + Size change
– Conv per ch per p → M-N+1 x P x C 

– Sum across channels → M-N+1 x P

– Max-pooling → 1 x P

– NonLin → Log(ReLU(.) + 0.01)
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CLDNN

M: input length in samples



  

Single-Channel
● Effect of #filters (P)

– Larger P → lower WER
– RWERR [40→128]: mel:3.2%; raw: 4.9%

 

● More filters operating in low 
frequencies
– Centre freq ≈ argmax freq 

response
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2000 h, Voice Search

M=35ms;   N=25ms;   P: 128



  

Single-Channel – Noisy Condition

● Distortion type
– Additive (SNR)→slightly better

– Reverberation (T60) → better

– Far-field (distance) → better
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Single vs Multi-Channel

● More channels is better
– Spatial filtering with higher 

resolution

● Raw outperforms log-mel

– Time info
● Phase spec → delay est

Multi-channel
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Single vs Multi-Channel
● More channels is better

– Saturation after 4

● Distortion type
– Additive: 2-6% better (abs)

– Reverberation (T60) → 2-3%

– Far-field (distance) → ~ 3%
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Comparison with Oracle Experiments
● Raw waveform systems:

– D+S: Align w/ oracle delay → sum → single-channel

– TAM: Align w/ oracle delay → multi-channel

– Raw, no tdoa: neuro-beamforming

 

● Neuro-BF w/o localisation
– Outperforms oracle D+S!

– Similar to TAM
● Delay is not important!
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Learned Filters – 2-channel
● Simultaneous Spatial 

and Spectral filtering

● Ch0 vs Ch1 Similar & 
delayed 
– Steering a null 

● Delay ≡ Direction  
 

● Larger BW for high fc
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Spectral Filtering

Spatial
Filtering



  

Geometric Mismatch; 2-channel
● Geometric mismatch experiments

– Trained on 14 cm mic spacing
– Test with 14, 10, 6, 2 cm

● D+S → stable performance
– Does not see the mismatch

● TAM & raw → stable except for 2cm
– Handle reasonable mismatch
– Train on 14, train on 2cm → strong mismatch
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Multi-Geometric Training (MGT)

● MGT to deal with geometric 
mismatch
 

● System well handles 2-14cm 
spacing 
 

● Works w/o delay knowledge!
– Outperforms single-channel!
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Learned Filters – Multi-Geo
● No longer exhibit 

strong spatial response
– max@fc - min@fc > 6dB

– No null
 

● Larger BW for high fc ?

E. Loweimi  33/42



  
E. Loweimi



  

Factorised Neuro-Beamformer
● Unfactorised

– tConv: Simultaneous spatial and spectral filtering

– Pooling + Non-linearity
 

● Factorised

– Intuition: Factor out spectral and spatial filtering
● tConv1 → spatial 
● tConv2 → spectral
● Pooling + Non-linearity
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Factorised vs Unfactorised Model

CLDNN
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Unfactorised: simultaneous 
Spectral and spatial filtering



  

Factorised vs Unfactorised Model
CLDNN

CLDNN

Spatial 
Filtering
(tConv1)

Spectral 
Filtering
(tConv2)
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Unfactorised: simultaneous 
Spectral and spatial filtering

factorised



  

Factorised Model – Parameters
CLDNN

Spatial 
Filtering
(tConv1)

Spectral 
Filtering
(tConv2)
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Valid Conv

Same
Conv

Shared 
across P

● M: input length (560)

● C: #channels (mic) = 2

● N: tConv1 filter len (80)

● P: tConv1 #filters

● g: tConv2 

● L: tConv2 filter len (400)

● F: tConv2 #filters (128)

● NonLin: log (ReLU(.) + 0.01)



  

Factorised vs Unfactorised Model
● tConv1: M = 560 samples [35ms], N=80 [5ms], tConv2: F=128, L=400, 
● Filter size (N) and #filters (P) is much smaller in tconv1

– Small N → broadband response → less spectral resolution
– Small P → a few spatial look directions

● Nonlin+pooling ONLY after tconv2, not tconv1
● Same vs Valid convolution types

● Feature dim: xt \in R1xFxP vs xt \in R1xP

● tConv2
– Longer-duration (better freq resolution), Single-channel filters
– Filters \in RLxFx1, shared across P input feature maps

– Convolution type: Valid => output RM-L+1xFxP → pooling → xt \in R1xFxP
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Factorised vs Unfactorised Model
Factorised Unfactorised

– Spatial Behaviour
     * wider beams + strong spatial response     
     * steering null
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– Spectral Behaviour
* multi-modal with different BWs



  

● Factored vs Unfactored
– 6.4% RWERR

 

● Higher P →lower WER
– P ≤ 10 Comp. Complexity

● tConv1
– Trained vs fixed: 

● 4.6% RWERR

Experimental Results
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MTL on Unfactored Model
● Speech Enhancement via DNNs

– Auto-Enc, TF mask, MTL, etc. 

● Multi-Task Learning (MTL)
– ASR predicts CD states

– Denoising predicts clean log-mel

– Loss = α CEASR + (1-α) MSEEnh

● Here, α = 0.9

E. Loweimi  40/42
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MTL on Unfactored Model
● Speech Enhancement via DNNs

– Auto-Enc, TF mask, MTL, etc. 

● Multi-Task Learning (MTL)
– ASR predicts CD states

– Denoising predicts clean log-mel

– Loss = α CEASR + (1-α) MSEEnh

 

– Optimal branch position ???
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MTL Optimal Position
● Higher layers better!

– After 1LSTM or DNN is 
optimal

– Why?
 

● Max gain (RWERR)
– 1 Ch → 3.8%  

– 2 Ch → 5.0 % 
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* MTL after …
     -- tConv
     -- fConv
     -- 1LSTM: 1st LSTM layer
     -- DNN (just before output layer)

Unfactored model



  

Training → CE vs Seq

● D+S → oracle delay

● MVDR → oracle delay and 
noise/speech cov mat
– Optimal in SINR

● Neuro-BF outperforms MVDR!

● MTL gain for factored: 2% 

2 Ch, P=10
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Conclusion – Part 3
● Raw waveform outperforms log-mel in CLDNN AM

– On 2000 h; min data amount for better perfomance?

● Neuro-beamforming
– w/o localisation, outperforms MVDR with oracle info
– Unfactorised: simultaneous Spectral & Spatial filtering

– Factorised: dissociates spectral and spatial filtering

● MTL → ASR + Enhancement → branch at high levels → helps
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That’s It!
● Thanks for Your Attention!

● Q & A

● Next Session: 
– Parametric CNNs for Raw waveform AM
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