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ASR via Divide-and-Conquer Paradigm
● Divide into several simpler & directly solvable sub-tasks which 

Solved/Optimised independently

● Feature Extraction → human speech perception & production

● Acoustic Modelling → Sequence & Statistical Modelling

● Raw waveform modelling premise ...
– DNNs are powerful enough to solve FE and AM 

simultaneously
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● Learned vs handcrafted pipeline
– Task-oriented

– Employ all signal information

– Learning basis functions
– Mid-term processing rather than short-term processing

– No need to exact alignment

Acoustic Modelling using 
Raw Waveform – Advantages
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Acoustic Modelling using 
Raw Waveform – Challenges

● High dimensional feature
– Discriminative models, CNN, matrix factorisation 

● Discard prior knowledge about auditory system
– Initialise first layer using perceptual scales 
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Our Plan ...
● Part I → IDIAP + AACHEN
● Part II → Baidu + JHU + Cambridge + Google
● Part III → Google + Parametric CNNs 
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Part I – Summary
● Conventional features are still better
● Architecture is important (CNN rather than MLP)
● Data amount and activation function can narrow the gap
● Interpretability

– First layer → time-frequency analysis
– Second layer → modulation spectrum processing
– Filters resemble auditory filters

● More filters in low freq, wider filters in high frequencies (trend-wise)
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Time-Frequency Analysis
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Time-Frequency Resolution Trade-off
● Gabor uncertainty principle: ∆t∆f ≥ 1/4π

– ∆t/∆f: uncertainty in temporal/spectral 
localisation

– Trade-off →↓∆f necessarily means↑∆t & vv

– Lower uncertainty ≡ higher resolution

– X-resolution: localisation accuracy@x-domain

● Longer filter/window in time domain
– Larger ∆t and necessarily smaller ∆f

● STFT→uniform resolution allocation
● Wavelet→non-uniform res. allocation

– Smaller ∆t for higher frequencies & vv
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Can we improve BOTH ∆f & ∆t?
● IMPOSSIBLE in a single Conv Layer … BUT ...

● … What about parallel CNNs with different filter lengths?

– Fuse info from representations with small ∆t & ∆f

– Cost: more memory and computation

Long Conv, small ∆f
Short Conv

small ∆t

x
t

. . .

Fuse info
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Multi-scale Analysis
● Idea: Ensemble of transformations 

with different resolutions
– Resolution ≡ Scale

● Implementation: Three parallel 
Conv layers with different filter len
– 1ms → small ∆t; 10ms → small ∆f 

● Info Fusion: Concatenate & linear 
combination of feature maps

High time 
resolution
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Architecture
● 3 Parallel Conv layers

– Multi-resolutions
● MaxPooling

– Consistent sampling rate
● Concat. + Lin projection

– Info fusion + Dim-Red

● 3x BRNN → 1FC → CTC

E. Loweimi
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Experimental Setup
● Data: 2400h, 16 kHz → diverse genre

– Read, conversational, accented and noisy

● Training
– SGD, Nesterov momentum, batch-norm per layer

● CTC supplemented with Kneser-Ney 5-gram LM
● Baseline feature: |FFT| (20ms, 10ms)
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Single-scale CNN; Stride matters ...
● Smaller stride → Better WER

– Denser sampling; more info

– Stride is NOT related to resolution!

● Raw outperforms baseline when 
stride is less than 2ms (fair?)
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Single-scale CNN; Stride matters ...
● Smaller stride → Better WER

– Denser sampling; more info

– Stride is NOT related to resolution!

● TotalStride (TS) is fixed (in 20ms) to 
keep sampling rate consistent 
– TS = conv-stride x pooling stride

– TS ≡ downsampling factor 
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Multi-scale CNNs Spectral Centroid

 

– Printed values → Average f
c
s for ConvL

* f
c  

= filter spectral centroid
 

– Multi-scale learning allows each scale to focus on frequencies it 
mostly efficiently represents
 

       * Short filters move toward high frequencies [2800 → 3500 Hz]
 

       * Long-filters move toward low frequencies [940 → 480 Hz]

Filter Index (after sorting) Filter Index (after sorting)

Low time resolution

10ms5ms1ms

time

freq
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Experimental Results

● Filter Len (scales): 1, 4, 40ms
– 40ms is optimal

– longer filters r more flexible!

● Multi-scale outperforms single 
even with identical #filters (161)

● More filters improves the WER

● Widening BN layer slightly helps

Convolution stride = ¼ filter length scales
Bottleneck size: 161
Bottleneck size for *: 800
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Typical Learned Filters
– Impulse Responses

1 ms 4 ms 40 ms

– Short filters focus on high freq; long filters on low frequencies
 

– Some filters localized in frequency (similar to sinusoid)
  
  
   

– Phase shifted filter pairs are also found → phase info importance
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Multi-span Acoustic Modelling; Idea
● Combine multiple input streams with different lengths

– Multi-span ≡ multi-stream
● All streams share the centre and label

● ith span len (Ti) is a function of CNN parameters

T
1

T
2

T
3

/label/
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1D-Conv Review

=.

Conv with
Stride S

Input x; 
length T

kth channel

* ≡

– T: input length in samples
– L: filter length in samples
– K: number of filters (5 here)
– S: stride in samples
– M: Conv output length in samples (per channel)

T

K

L

L

M
L

S

K

M
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Multi-span CNN
● T: span/stream length

– T = (M-1)S + L

● For ith stream ...
– Fix Mi in M

– Set Li & Si; Now find Ti

● Goal: learn more diverse 
feature representation
– Contextual info

L
2
:5, S

2
:4, T

2
:13   M=3   L

1
:5, S

1
:1, T

1
:7
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Multi-Span CNN Architecture
● Each stream processed by ...

– A stack of two CNNs
– Linear projection (Pi)

● Dim reduction RMxK→ R150

● Concatenated [P1, P2 , P3]
● MLP with 4 hidden layers

– 512 ReLU unite per layer
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Multi-Span CNN Architecture
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● ... M is fixed, L, S and T (span) vary. This COULD mean ...

E. Loweimi

Multi-Span Processing Interpretation
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● ... M is fixed, L, S and T (span) vary. This COULD mean ...
– Multi-resolution processing

● Filters with different L  and  fixed S
– Multi-rate sampling

● Filters with different S  and  fixed L
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● ... M is fixed, L, S and T (span) vary. This COULD mean ...
– Multi-resolution processing

● Filters with different L  and  fixed S
– Multi-rate sampling

● Filters with different S  and  fixed L
 

● Which one is better? Multi-resolution or multi-rate?

E. Loweimi

Multi-Span Processing Interpretation
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Experimental Setup
● Databases: CHiME4 and AMI

● Toolkit: HTK 3.5.1 and PyHTK

● Training: CE, SGD, Momentum, Weight decay, NewBob+ learning rate scheduler, 
10% CrossVal

● First ConvLayer

– Mi=200, K = #kernels = 64, L & S adjusted

● Second ConvLayer setting, for all streams, 

– Mi2=11, Si2=1024, Li2=2560, K2=64 ???

● DNN on top of concatenated features → MLP-4HL-512-ReLU
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CHiME4 – Single Span

● WERFbank  <  WERSingle-span Raw

● Fixing S in 10 samples (~0.6ms)
– Optimal L: 50 samples [~3ms]

● Fixing L in 50 samples
– Optimal S: 15 samples
– Too short (4) or too long (20 

samples) is not optimal

mssamples WER
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CHiME4 – Multi-Span
● Multi-span with optimal setting 

outperforms Fbank & single

E. Loweimi

Baseline: FBANK
Best Single-Span
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CHiME4 – Multi-Span
● Multi-span with optimal setting 

outperforms Fbank & single

● Multi-resolution processing
– Variable L, fixed S

● Multi-rate sampling
– Fixed L, variable S

E. Loweimi

Baseline: FBANK
Best Single-Span
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CHiME4 – Multi-Span
● Multi-span under optimal 

setting outperforms Fbank & 
single-span

● Multi-resolution processing
– HERE, Fbank and Single-

span are better!!!

● Multi-rate sampling
– Optimal performance

E. Loweimi

Baseline: FBANK
Best Single-Span
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AMI-IHM – Single and Multi-Span
● Optimal single & multi-spam 

outperform Fbank
– Single-span: 0.3% abs   

– Multi-span: 1.8% 
– Single was worse for CHiME4

● Optimal setup
– Single: L=50, S=15

– Multi: L=50, S=4,9,15
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Learned Filters
● Model tends to learn short 

filters (HERE)
 

● Filters do not seem to follow 
an audiological distribution
– For L=50, S=4,9,15 ...

● S=4 → emphasis on low freq
● S=15 → emphasis on high freq

● Why?

50 samples 400 samples

150 samples

Stride: 4 Stride: 9 Stride: 15
L: 50, S=4,9,15
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Idea and Contribution
● Using a modified NIN architecture
● Feature/Data pre-processing

– MVN, speed and shift perturbation

● Speaker adaptation (iVector bias)
● Filter interpretation
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Network in Network (NIN)

2014
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Network in Network (NIN)
● NIN has two main components:

– Micro NN, e.g. MLP
● Each adjacent layer pair has their own Micro NN

– Global Average Pooling
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NIN – MLPconv Layer
● A non-linear filtering, allows complex and learnable interaction 

between channels
– Cross channel parametric pooling structure

– Comparable to linear channel combination via 1x1 Conv 

● Channels’ response to each input patch is computed, then non-
linearly combined through MLP

ConvLayer MLPconv
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NIN – Global Average Pooling
● IDEA: Replace the FC NN with a Conv Layer

– Channel ≡ Class, #Channels = #Classes
● HOW: 

– Compute and Average the feature map for each channel
– Pass the averages to softmax

● ADVANTAGES:
– Fewer parameters than FC + Some translation invar
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Idea and Contribution
● Using a modified NIN architecture
● Feature/Data pre-processing

– MVN, speed and shift perturbation

● Speaker adaptation (iVector bias)
● Filter interpretation
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Features Pre-processing: MVN
● Raw waveform is MVNed at utterance level

– DC removal and loudness equalisation

– Stabilise the training
● Put numbers in similar range
● Slightly faster convergence
● Identical final performance on WSJ
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Data Perturbation: Speed & Shift
● Speed → Articulation speed invariant → MFCC & Raw

– Speed factor: 0.9, 1.0, 1.1

● Shift → translation invariant 

– |FFT|-based features are shift invariant, BUT Raw is NOT
– Randomly shift raw frames to right (≤ 0.2 frame-len)
– Improves CE on Train and Dev
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Data Perturbation: Speed & Shift
● Speed → Articulation speed invariant → MFCC & Raw

– Speed factor: 0.9, 1.0, 1.1

● Shift → translation invariant 

– |FFT|-based features are shift invariant, BUT Raw is NOT
– Randomly shift raw frames to right (≤ 0.2 frame-len)
– Improves CE on Train and Dev

E. Loweimi  30/48
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NIN Architecture
● Layers are interleaved with Micro NN

● NIN is interpretable as a pooling block 
or a many-to-many non-linearity

● HERE: μNN: U1→ReLU→U2→ReLU

– U1 → m x k linear mapping

– U2 → k x n linear mapping

– m: in-dim;  n:out-dim

– k: NIN hidden dim (k ≈ 5m)

NIN

Non-overlapping
Input patches

Norm Layer

U
1 ReLU U

2 ReLU
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NIN Architecture
● Interpretable as a FC layer with block 

diagonal weight matrix

● Sharing Uis across a NIN ≡ 1D-Conv

● Uis operate on non-overlapping patches

– m = Filter length = Stride

– A FC layer with shared block diagonal W

Non-overlapping
Input patches

Norm Layer

E. Loweimi  32/48

.
.

.



  

Normalisation Layers
● Normalisation layer is put after each NIN 
● Goal: Scale down the whole set of activations and 

stabilises training
● Application: For unbounded-output non-linearities
● How:

– yi = xi / σ if σ>1 else xi   # σ is uncentered STD of layer X (xi: ith unit)
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Statistics Extraction Layers
● Statistics Extraction layer

– Computes 1st and 2nd (STD) order statistics from hidden 
layer activation

● Stats computed over a moving win of ≤ 200 frames (2 sec)
● Stats are appended to the input of the next hidden layer (bias)

– Advantages:
● Capture long-term effect (speaker, channel, environment)
● Hopefully helpful in alleviating sensitivity to them
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Feature Extraction Block

● 1D-Conv with #Ch = N

● Log(Abs)

● 2 NINs

● Append with iVector

● Affine Transform
– Output dim: D3
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Feature Extraction Block
● 1D-Conv, N filters, Kernel_len K, Stride S

– NIN shared across all N filters/bands

● Log (|ConvOut|) ≡ log-Fbank

● 2 NINs + norm layers

● Speaker adaptation using iVector
– iVector → Affine trans. → ReLU → Append

● Affine projection after augmentation by iVector
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Classification Block
● Appended Xt1, …, Xtn with 

moving stats (M & S) 
extracted by StatsExt layer

● Splice the features via TDNN

● One NIN layer

● Affine transformation

– Dim reduction to D3

● MLP→6 HiddLayers (ReLU)

E. Loweimi

TDNN
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Experimental Setup
● MFCC: 40-dim, iVector: 100-dim
● Raw waveform length: M = 50ms, MVN on utterance level
● WSJ: 

– #filters=40, filter_len=30ms, stride=0.625ms (10 samples)
– m=16, k=300, n=32, 6HL-750-ReLU

● SWB:
– #filters=100, filter_len=31.25, stride=1.25ms (10 samples)

– FeatureExtraction block:  m=16, k=120, n=18, D3=500, 100 micro NIN

– Classification block:  m=5, k=75, n=18, 100 micro NIN, 6HL-600-ReLU
– lattice-free MMI
– StatsExtractor MVN → 99 frames on either sides
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First Layer’s Learned Filters

● NIN effect vs p-norm pooling
– Faster convergence
– Higher log-likelihood
– Max-pooling ???

 

● Learned filters @ L1

– Bandpass filters
– Linear < 1 kHz

– Non-linear > 1 kHz 
E. Loweimi

Task: WSJ; #filters=40

Task: SWB; #filters=100
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Experimental Results – WSJ
● WERMFCC - WERRaw ≈ 1% abs

● Raw → used p-norm instead NIN

● Raw+NIN vs Raw
– Worse WER, better log-like

● iVector speaker adaptation
– improves MFCC (+9.4% RWERR)

– degrades Raw (-5.9% RWERR*)
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Experimental Results – SWB
● Raw slightly (0.1% abs) 

outperforms MFCC 

● Using StatsExt layer is useful 
– More useful for Raw

● iVector useful for both
– It should be “+Stats+iVector”

– Slightly useful for Raw

– More useful for MFCC

– MFCC ↔ ReLU
– Raw ↔ NIN

*  “… but only a little improvement in 
the raw waveform setup ...”
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CNN, LSTM and DNN (MLP) ...
● ... are limited in their modelling capabilities ... 

– CNN → Efficient feature extraction; Invariant to ...

– LSTM → Temporal/Sequential processing

– DNN (MLP) → Abstract representation extraction
● Linearly separable → class discrimination

 

● What is an optimal combination?
– GMM/HMM: MFCC→HMM→ GMM
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CLDNN: CNN + LSTM + DNN
● fConv: 2 Layers 2D-Conv

– Max-pooling: non-overlapping, only L1, only 
in frequency

● Linear dim reduction (from flatten to 256)

● LSTM: 2 layers, 832 cells, projected to 512 

● DNN → 2 layers, 1024 ReLU units

Conv-L
1

Conv-L
2

LSTM-L
1

LSTM-L
2

DNN

X
t 
= [x

t-L
, …, x

t
]

...

Dim-Red
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CLDNN: CNN + LSTM + DNN
● fConv: 2 Layers 2D-Conv

– Max-pooling: non-overlapping, only L1, only 
in frequency

● Linear dim reduction (from flatten to 256)

● LSTM: 2 layers, 832 cells, projected to 512 

● DNN → 2 layers, 1024 ReLU units

● Multi-scale addition → concatenate long-
term representation f(xt-l,…,xt) with xt 

Conv-L
1

Conv-L
2

LSTM-L
1

LSTM-L
2

DNN

X
t 
= [x

t-L
, …, x

t
]

...

Dim-Red
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Experimental Setup
● Data: Voice Search task,

– 200h and 2000h, clean and noisy

● Optimisation: 
– Asynchronous SGD (ASGD) + exp learning rate decay

● Architecture: variable for different experiments
– #filters=256, max-pooling@L1=3

● Initialisation: 
– CNN & DNN: Glorot-Bengio (Gaussian) 
– LSTM → zero-mean, var: 1/#inputs
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Experimental Results – Baselines
● DNN: FC-6L-1024-ReLU; Context: [-20,+5]

● CNN: 2LConv + FC-4L-1024-ReLU; Context: [-20,+5]

● LSTM: 2L, unroll:20, context: [-l=0,0]

● LSTM & CNN works equally well

Feature: FBank
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Experimental Results – Baselines
● DNN: FC-6L-1024-ReLU; Context: [-20,+5]

● CNN: 2LConv + FC-4L-1024-ReLU; Context: [-20,+5]

● LSTM: 2L, unroll:20, context: [-l,0]

– Adding left context [-l,0] is not required!

– Unroll=30 is not optimal

– Adding third Layer was not useful

Feature: FBank
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DNN-LSTM vs CNN-LSTM
● CNN+LSTM

– Better than LSTM

● DNN+LSTM
– Worse than LSTM

● CNN is a better feature extraction CNN → LSTM
DNN → LSTM
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DNN-LSTM vs CNN-LSTM
● CNN+LSTM vs DNN+LSTM

– CNN is a better 

● Optimal context: [-10,0]
– CNN & DNN need context!

● NOT LSTM! CNN → LSTM
DNN → LSTM
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LSTM + DNN
● LSTM+DNN outperform LSTM

– Contrary to DNN+LSTM ...
– Gain saturated after 2 FC layers

 

● Both CNN+LSTM & LSTM+DNN 
work well; combine them ...
– CNN+LSTM → LSTM+DNN
– CNN → LSTM→ DNN = CLDNN

200h data, FC-1024-ReLU
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Effect of Other Factors

● Initialisation effect:
– Uniform vs Gauss

– Uniform is better (WER: 17.3 → 17.0)
 

● Multi-scale addition is useful (16.8)

● Passing CNN output to both LSTM & 
DNN is NOT useful

200h

200h

E. Loweimi

(Uni Init)
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Training on 2000 hour + Seq Training
● Advantages of CLDNN carry over 

to 2000h data

● LSTM→CLDNN, CE RWERR
– Clean: 4.1%; Multi: 4.4%

● LSTM→CLDNN, Seq RWERR
– Clean: 4.4%; Multi: 7.4%

● CE → Seq, RWERR: 6% →10%
● Multi-scale useful only for CE

Clean

Multi
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Next Session …

Raw waveform modelling using 
CLDNN + Beamforming

 

+
 

Parametric CNNs for Raw Waveform 
Modelling
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That’s It!
● Thanks for Your Attention!
● Q/A

E. Loweimi
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