



Raw Waveform Modelling for ASR A Literature Review Part II

Erfan Loweimi

Centre for Speech Technology Research (CSTR) The University of Edinburgh Listen! 12.2.2020

ASR via Divide-and-Conquer Paradigm

- Divide into several simpler & directly solvable sub-tasks which Solved/Optimised independently
- Feature Extraction \rightarrow human speech perception & production
- Acoustic Modelling → Sequence & Statistical Modelling
- Raw waveform modelling premise ...
 - DNNs are powerful enough to solve FE and AM simultaneously

Acoustic Modelling using Raw Waveform – Advantages

- Learned vs handcrafted pipeline
 - Task-oriented
 - Employ all signal information
 - Learning basis functions
 - Mid-term processing rather than short-term processing
 - No need to exact alignment

Acoustic Modelling using Raw Waveform – Challenges

- High dimensional feature
 - Discriminative models, CNN, matrix factorisation

- Discard prior knowledge about auditory system
 - Initialise first layer using perceptual scales

Our Plan ...

• Part I → IDIAP + AACHEN

- **RNTHAACHEN** UNIVERSITY
- Part II → Baidu + JHU + Cambridge + Google
- Part III -> Google + Parametric CNNs

Part I – Summary

- Conventional features are still better
- Architecture is important (CNN rather than MLP)
- Data amount and activation function can narrow the gap
- Interpretability
 - First layer \rightarrow time-frequency analysis
 - Second layer \rightarrow modulation spectrum processing
 - Filters resemble auditory filters
 - More filters in low freq, wider filters in high frequencies (trend-wise)

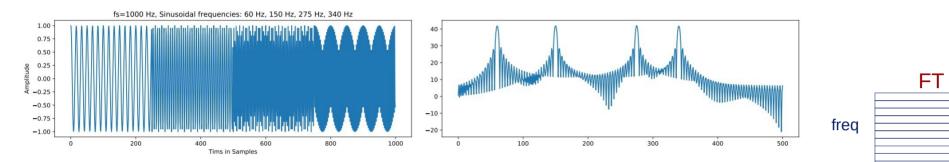
Learning Multiscale Features Directly From Waveforms

Zhenyao Zhu*^{1,2}, Jesse H. Engel*¹, Awni Hannun¹

¹Baidu Silicon Valley AI Lab (SVAIL) ²The Chinese University of Hong Kong

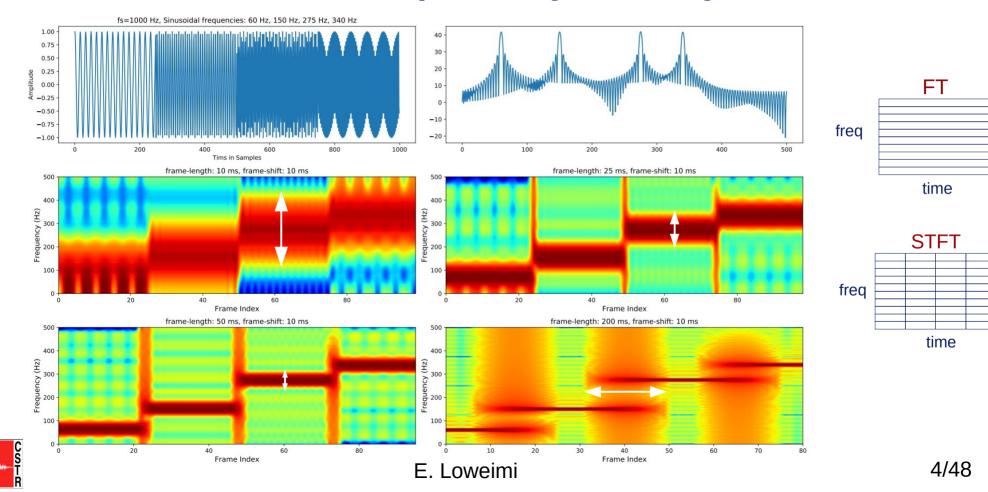
* Authors contributed equally to this work

zhuzychn@gmail.com, jengel@baidu.com, awnihannun@baidu.com

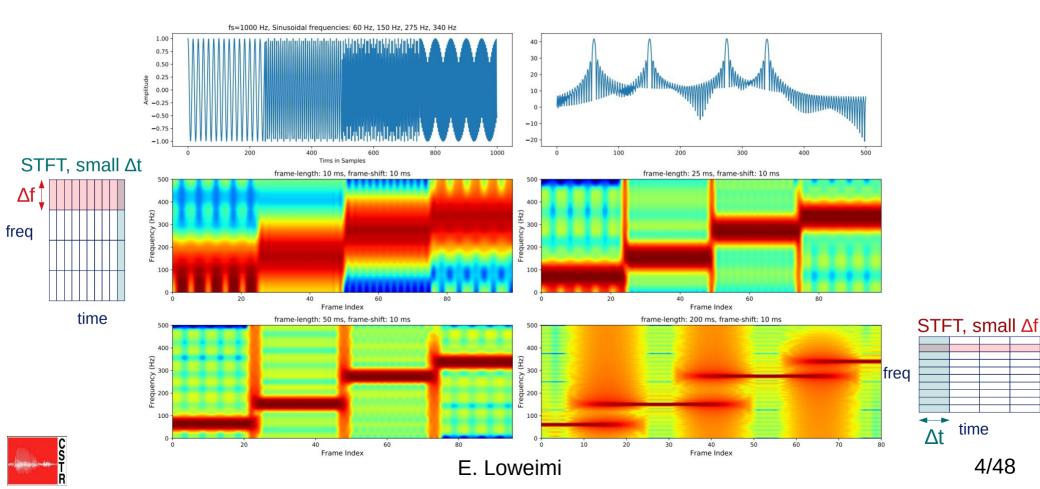


NIV

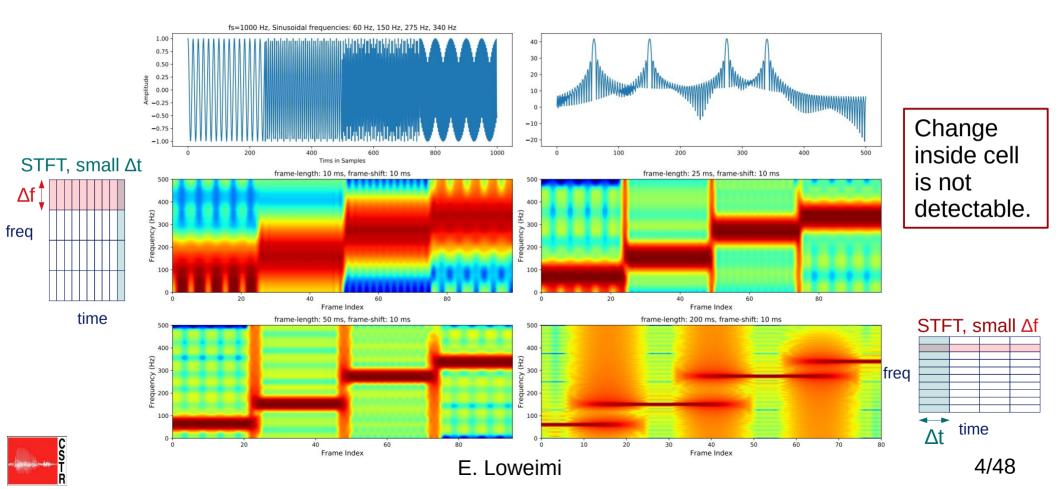
Time-Frequency Analysis



Time-Frequency Resolution Trade-off



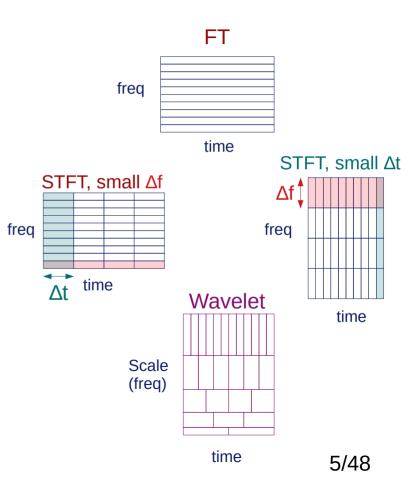
Time-Frequency Resolution Trade-off



Time-Frequency Resolution Trade-off

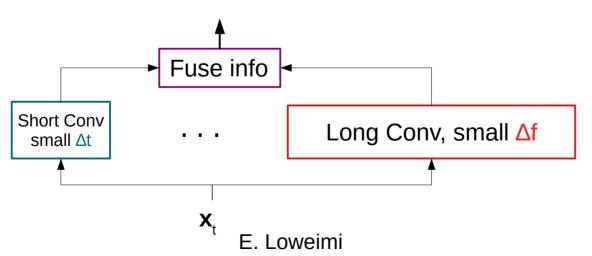
- Gabor uncertainty principle: $\Delta t \Delta f \ge 1/4\pi$
 - Δt/Δf: uncertainty in temporal/spectral localisation
 - Trade-off $\rightarrow \downarrow \Delta f$ necessarily means $\uparrow \Delta t \& vv$
 - Lower uncertainty \equiv higher resolution
 - X-resolution: localisation accuracy@x-domain
- Longer filter/window in time domain
 - Larger Δt and necessarily smaller Δf
- STFT $\ensuremath{\rightarrow}$ uniform resolution allocation
- Wavelet \rightarrow non-uniform res. allocation

 Smaller ∆t for higher frequencies & vv E. Loweimi



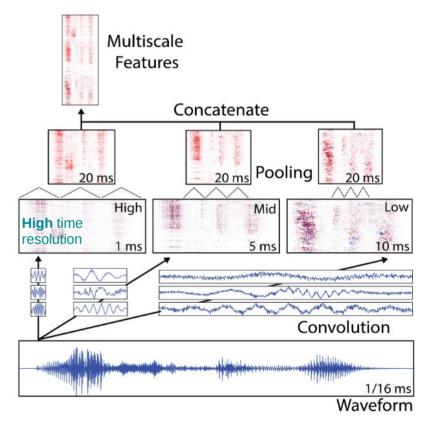
Can we improve BOTH $\Delta f \& \Delta t$?

- IMPOSSIBLE in a single Conv Layer ... BUT ...
- ... What about parallel CNNs with different filter lengths?
 - Fuse info from representations with small $\Delta t \& \Delta f$
 - Cost: more memory and computation



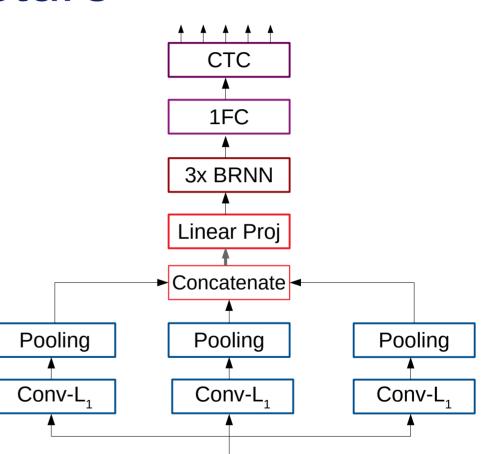
Multi-scale Analysis

- Idea: Ensemble of transformations with different resolutions
 - Resolution \equiv Scale
- **Implementation:** Three parallel Conv layers with different filter len
 - 1ms → small Δt ; 10ms → small Δf
- Info Fusion: Concatenate & linear combination of feature maps



Architecture

- 3 Parallel Conv layers
 - Multi-resolutions
- MaxPooling
 - Consistent sampling rate
- Concat. + Lin projection
 - Info fusion + Dim-Red
- 3x BRNN \rightarrow 1FC \rightarrow CTC



Experimental Setup

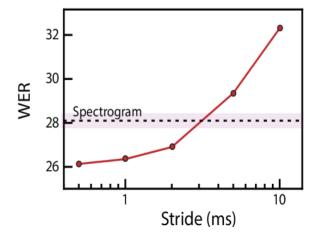
- Data: 2400h, 16 kHz \rightarrow diverse genre
 - Read, conversational, accented and noisy
- Training
 - SGD, Nesterov momentum, batch-norm per layer
- CTC supplemented with Kneser-Ney 5-gram LM
- Baseline feature: |FFT| (20ms, 10ms)

Single-scale CNN; Stride matters ...

- Smaller stride → Better WER
 - Denser sampling; more info
 - Stride is NOT related to resolution!

Туре	Spectrogram / Convolution Pooling				WER(%)	
Type	# Features	Window	Stride	Stride		
FFT	161	20ms	10ms	2	28.10	
wav	161	20ms	10ms	2	32.31	
wav	161	20ms	5ms	4	29.35	
wav	161	20ms	2ms	10	26.90	
wav	161	20ms	1ms	20	26.35	
wav	161	20ms	0.5ms	40	26.13	

 Raw outperforms baseline when stride is less than 2ms (fair?)

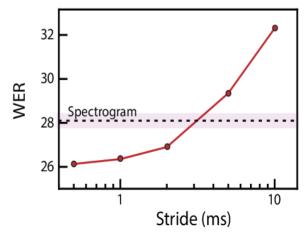


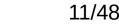
Single-scale CNN; Stride matters ...

- Smaller stride → Better WER
 - Denser sampling; more info
 - Stride is NOT related to resolution!
- TotalStride (TS) is fixed (in 20ms) to keep sampling rate consistent
 - TS = conv-stride x pooling stride
 - $TS \equiv$ downsampling factor

$$M = \left\lfloor \frac{T - L}{SP} \right\rfloor + 1$$

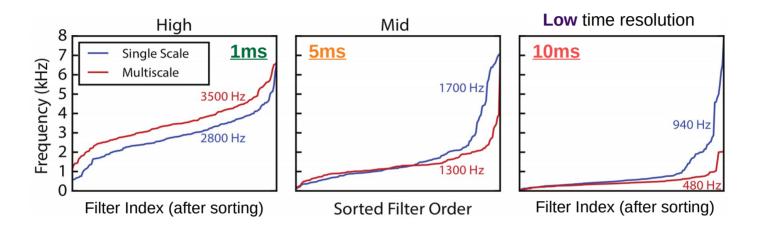
Туре	Spectrogram / Convolution			Pooling	WER(%)
Type	# Features	Window	Stride	Stride	
FFT	161	20ms	10ms	2	28.10
wav	161	20ms	10ms	2	32.31
wav	161	20ms	5ms	4	29.35
wav	161	20ms	2ms	10	26.90
wav	161	20ms	1ms	20	26.35
wav	161	20ms	0.5ms	40	26.13



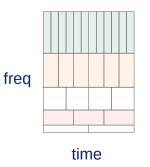


E. Loweimi

Multi-scale CNNs Spectral Centroid



- Printed values \rightarrow Average f_c s for ConvL
 - * f_c = filter spectral centroid
- Multi-scale learning allows each scale to focus on frequencies it mostly efficiently represents
 - * Short filters move toward high frequencies [2800 \rightarrow 3500 Hz]
 - * Long-filters move toward low frequencies [940 \rightarrow 480 Hz]



Experimental Results

- Filter Len (scales): 1, 4, 40ms
 - 40ms is optimal
 - longer filters r more flexible!
- Multi-scale outperforms single even with identical #filters (161)
- More filters improves the WER
- Widening BN layer slightly helps

	WER(%)		
High (1ms)	Mid (4ms)	Low (40ms)	
161	0	0	32.84
0	161	0	27.69
0	0	161	26.54
61	50	50	25.67

Convolution stride = ¼ filter length scales Bottleneck size: 161 Bottleneck size for *: 800

	WER(%)		
High (1ms)	Mid (4ms)	Low (40ms)	
61	50	50	25.67
161	161	161	23.78
160	320	640	23.52
160	320	640	23.28*

Typical Learned Filters – Impulse Responses

1 ms	4 ms	40 ms
\bigwedge	Martin Martin	water
\mathcal{M}	\sim	and and the second an
\mathcal{M}	m My man	Munder when the second when we have the second of the seco
₩ ₩	$\sim\sim\sim\sim\sim$	un and a second and a
/////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

- Short filters focus on high freq; long filters on low frequencies
- Some filters localized in frequency (similar to sinusoid)
- Phase shifted filter pairs are also found \rightarrow phase info importance

Multi-Span Acoustic Modelling using Raw Waveform Signals

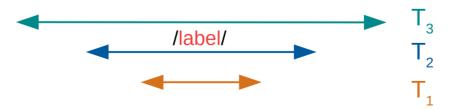
P. von Platen^{1,2}, C. Zhang¹, P. C. Woodland¹

¹ Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K. ² Institute of Communication Systems (IKS), RWTH Aachen University, Germany {pwv20, cz277, pcw}@eng.cam.ac.uk

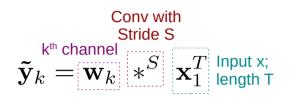
Corre

Multi-span Acoustic Modelling; Idea

- Combine multiple input streams with different lengths
 - Multi-span \equiv multi-stream
- All streams share the centre and label
- i^{th} span len (T_i) is a function of CNN parameters

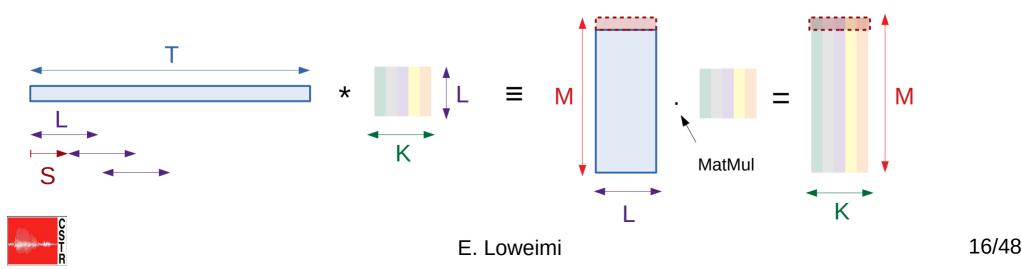


1D-Conv Review



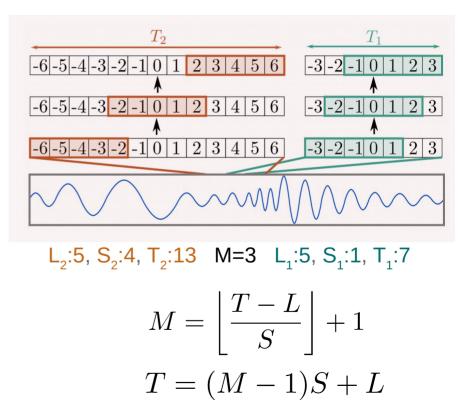
$$M = \left\lfloor \frac{T - L}{S} \right\rfloor + 1$$

- T: input length in samples
- L: filter length in samples
- K: number of filters (5 here)
- S: stride in samples
- M: Conv output length in samples (per channel)



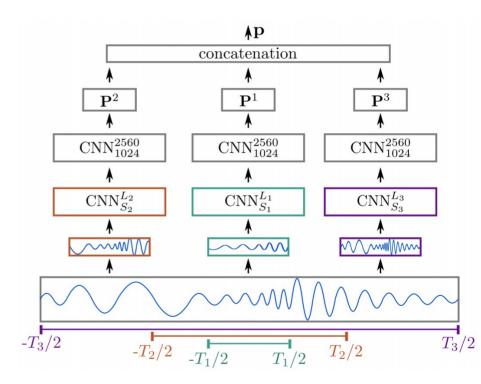
Multi-span CNN

- T: span/stream length
 - T = (M-1)S + L
- For ith stream ...
 - Fix M_i in M
 - Set $L_i \& S_i$; Now find T_i
- Goal: learn more diverse feature representation
 - Contextual info



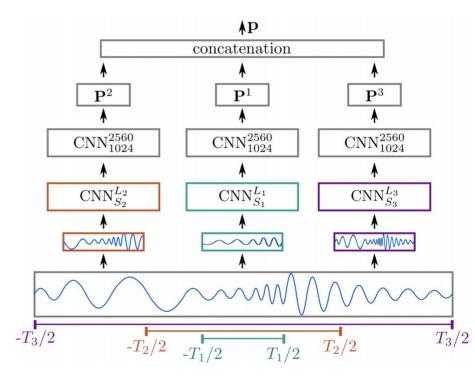
Multi-Span CNN Architecture

- Each stream processed by ...
 - A stack of two CNNs
 - Linear projection (Pⁱ)
 - Dim reduction $R^{MxK} \rightarrow R^{150}$
- Concatenated [P1, P2, P3]
- MLP with 4 hidden layers
 - 512 ReLU unite per layer



Multi-Span CNN Architecture

$$\mathbf{y}_{k}^{i} = \mathbf{w}_{k} *^{S} \mathbf{x}_{-T_{i}/2}^{T_{i}/2}$$
$$\mathbf{y}^{i} = CNN_{S_{i}}^{L_{i}}(\mathbf{x}_{-T_{i}/2}^{T_{i}/2}, M_{i})$$
$$\mathbf{o}^{i} = CNN_{S_{i_{2}}}^{L_{i_{2}}}(\mathbf{y}^{i}, M_{i_{2}})$$
$$\mathbf{p}^{i} = \mathbf{P}^{i} \mathbf{o}_{flatten}^{i}$$
$$\mathbf{p} = \text{concatenate}(\mathbf{p}^{1}, \mathbf{p}^{2}, \mathbf{p}^{3})$$



Multi-Span Processing Interpretation

• ... M is fixed, L, S and T (span) vary. This **COULD** mean ...

Multi-Span Processing Interpretation

- ... M is fixed, L, S and T (span) vary. This **COULD** mean ...
 - Multi-resolution processing
 - Filters with different L and fixed S
 - Multi-rate sampling
 - Filters with different S and fixed L

Multi-Span Processing Interpretation

- ... M is fixed, L, S and T (span) vary. This **COULD** mean ...
 - Multi-resolution processing
 - Filters with different L and fixed S
 - Multi-rate sampling
 - Filters with different S and fixed L
- Which one is better? Multi-resolution or multi-rate?

Experimental Setup

- Databases: CHiME4 and AMI
- Toolkit: HTK 3.5.1 and PyHTK
- Training: CE, SGD, Momentum, Weight decay, NewBob+ learning rate scheduler, 10% CrossVal
- First ConvLayer
 - M_i =200, K = #kernels = 64, L & S adjusted
- Second ConvLayer setting, for all streams,
 - M_{i2}=11, S_{i2}=1024, L_{i2}=2560, K₂=64 ???
- DNN on top of concatenated features \rightarrow MLP-4HL-512-ReLU

CHiME4 – Single Span

- WER_{Fbank} < WER_{Single-span Raw}
- Fixing S in 10 samples (~0.6ms)
 - Optimal L: 50 samples [~3ms]
- Fixing L in 50 samples
 - Optimal S: 15 samples
 - Too short (4) or too long (20 samples) is not optimal

	sam	ples	ms	WER
ID	S	L	T	dev
F_{160}^{400}	160	400	125	18.1
I_{10}^{400}	10	400	149	20.2
I_{10}^{100}	10	100	131	19.4
I_{10}^{50}	10	50	128	19.3
I_{10}^{25}	10	25	125	20.7
I_{4}^{50}	4	50	53	23.2
I_{9}^{50}	9	50	115	19.7
I_{15}^{50}	15	50	190	18.3
I_{20}^{50}	20	50	252	20.7

 F_{160}^{400} : FBank baseline

400: 25ms, 160: 10ms

CHiME4 – Multi-Span

• Multi-span with optimal setting outperforms Fbank & single

	sai	mples	ms	WER
ID	S	L	T	dev
$\frac{M^{50,100,400}_{15,15,15}}{M^{50,100,400}}$	15	50,100,40	0 190-212	18.4
IVI 1 O 1E	4,9,15	50,100,40	0 53-212	17.9
$M^{4,9,15}_{4,9,15}$	4,9,15	50	53-190	17.1
F_{160}^{400}	160	400	125	18.1
I_{15}^{50}	15	50	190	18.3

Baseline: FBANK Best Single-Span

CHiME4 – Multi-Span

- Multi-span with optimal setting outperforms Fbank & single
- Multi-resolution processing
 - Variable L, fixed S
- Multi-rate sampling
 - Fixed L, variable S

ID	S	L	T	dev
$M^{50,100,400}_{15,15,15} \ M^{50,100,400}_{4.9,15}$	15	50,100,400) 190-212	18.4
$M_{4,9,15}^{50,100,400}$	4,9,15	50,100,400) 53-212	17.9
$M^{4,9,15}_{4,9,15}$	4,9,15	50	53-190	17.1
F_{160}^{400}	160	400	125	18.1
I_{15}^{50}	15	50	190	18.3

Baseline: FBANK Best Single-Span

CHiME4 – Multi-Span

- Multi-span under optimal setting outperforms Fbank & single-span
- Multi-resolution processing
 - HERE, Fbank and Singlespan are better!!!
- Multi-rate sampling
 - Optimal performance

ID	S	L	T	dev
$M^{50,100,400}_{15,15,15} \ M^{50,100,400}_{50,100,400}$	15	50,100,400	190-212	18.4
$^{IVI}4 9 15$	4,9,15	50,100,400	53-212	17.9
$M_{4,9,15}^{50,50,50}$	4,9,15	50	53-190	17.1
F_{160}^{400}	160	400	125	18.1
I_{15}^{50}	15	50	190	18.3

Baseline: FBANK Best Single-Span

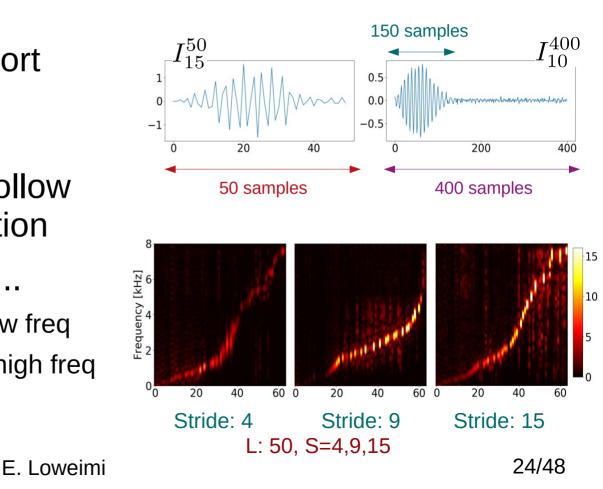
AMI-IHM – Single and Multi-Span

- Optimal single & multi-spam outperform Fbank
 - Single-span: 0.3% abs
 - Multi-span: 1.8%
 - Single was worse for CHiME4
- Optimal setup
 - Single: L=50, S=15
 - Multi: L=50, S=4,9,15

ID	System	dev	eval
F_{160}^{400}	FBANK-DNN	28.3	31.1
I_{10}^{400}	Single-Span-DNN	29.1	31.9
I_{15}^{50}	Single-Span-DNN	28.1	30.8
$M^{50,50,50}_{4,9,15}$	Multi-Span-DNN	27.2	29.3

Learned Filters

- Model tends to learn short filters (HERE)
- Filters do not seem to follow an audiological distribution
 - For L=50, S=4,9,15 ...
 - S=4 \rightarrow emphasis on low freq
 - S=15 \rightarrow emphasis on high freq
 - Why?



Acoustic modelling from the signal domain using CNNs

Pegah Ghahremani¹, Vimal Manohar¹, Daniel Povey^{1,2}, Sanjeev Khudanpur^{1,2}

¹Center of Language and Speech Processing ²Human Language Technology Center Of Excelence, Johns Hopkins University, Baltimore, MD {pghahre1, vmanoha1, khudanpur}@jhu.edu, dpovey@gmail.com

Idea and Contribution

- Using a modified NIN architecture
- Feature/Data pre-processing
 - MVN, speed and shift perturbation
- Speaker adaptation (iVector bias)
- Filter interpretation

Idea and Contribution

- Using a modified NIN architecture
- Feature/Data pre-processing
 - MVN, speed and shift perturbation
- Speaker adaptation (iVector bias)
- Filter interpretation

Network in Network (NIN)

Network In Network

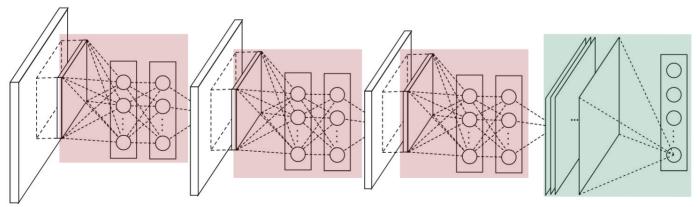
Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering ²Department of Electronic & Computer Engineering National University of Singapore, Singapore {linmin, chengiang, eleyans}@nus.edu.sg

E. Loweimi

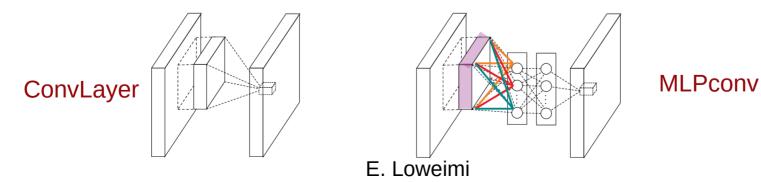
Network in Network (NIN)

- NIN has two main components:
 - Micro NN, e.g. MLP
 - Each adjacent layer pair has their own Micro NN
 - Global Average Pooling



NIN – MLPconv Layer

- A non-linear filtering, allows complex and learnable interaction between channels
 - Cross channel parametric pooling structure
 - Comparable to linear channel combination via 1x1 Conv
- Channels' response to each input patch is computed, then nonlinearly combined through MLP



NIN – Global Average Pooling

- IDEA: Replace the FC NN with a Conv Layer
 - Channel = Class, #Channels = #Classes
- HOW:
 - Compute and Average the feature map for each channel
 - Pass the averages to softmax
- ADVANTAGES:
 - Fewer parameters than FC + Some translation invar

Idea and Contribution

- Using a modified NIN architecture
- Feature/Data pre-processing
 - MVN, speed and shift perturbation
- Speaker adaptation (iVector bias)
- Filter interpretation

END
DETOUR

Features Pre-processing: MVN

- Raw waveform is MVNed at utterance level
 - DC removal and loudness equalisation
 - Stabilise the training
 - Put numbers in similar range
 - Slightly faster convergence
 - Identical final performance on WSJ

Data Perturbation: Speed & Shift

- **Speed** \rightarrow Articulation speed invariant \rightarrow MFCC & Raw
 - Speed factor: 0.9, 1.0, 1.1
- **Shift** \rightarrow translation invariant
 - [FFT]-based features are shift invariant, BUT Raw is NOT
 - Randomly shift raw frames to right (≤ 0.2 frame-len)
 - Improves CE on Train and Dev

Perturbation method	Training CE	Validation CE
No random shift	-0.96	-1.22
With random shift	-0.88	-1.13

Data Perturbation: Speed & Shift

- **Speed** \rightarrow Articulation speed invariant \rightarrow MFCC & Raw
 - Speed factor: 0.9, 1.0, 1.1
- **Shift** \rightarrow translation invariant
 - |FFT|-based features are shift invariant, BUT Raw is NOT
 - Randomly shift raw frames to right (≤ 0.2 frame-len)
 - Improves CE on Train and Dev

Perturbation method	Training CE	Validation CE
No random shift	-0.96	-1.22
With random shift	-0.88	-1.13

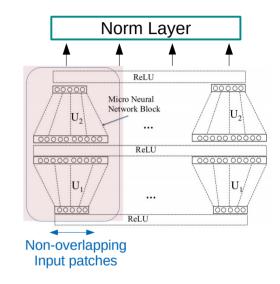
Data Perturbation: Speed & Shift

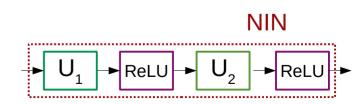
- **Speed** \rightarrow Articulation speed invariant \rightarrow MFCC & Raw
 - Speed factor: 0.9, 1.0, 1.1
- **Shift** \rightarrow translation invariant
 - |FFT|-based features are shift invariant, BUT Raw is NOT
 - Randomly shift raw frames to right (≤ 0.2 frame-len)
 - Improves CE on Train and Dev
 - Can CE become negative?
 - Should be Log-likelihood ...

Perturbation method	Training CE	Validation CE
No random shift	-0.96	-1.22
With random shift	-0.88	-1.13

NIN Architecture

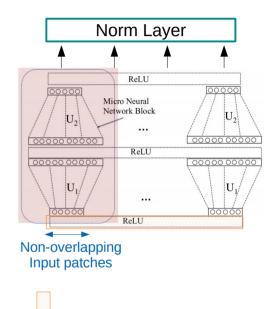
- Layers are interleaved with Micro NN
- NIN is interpretable as a pooling block or a many-to-many non-linearity
- HERE: μNN : $U_1 \rightarrow ReLU \rightarrow U_2 \rightarrow ReLU$
 - $U_1 \rightarrow m x k$ linear mapping
 - $U_2 \rightarrow k \times n$ linear mapping
 - m: in-dim; n:out-dim
 - k: NIN hidden dim (k \approx 5m)





NIN Architecture

- Interpretable as a FC layer with block diagonal weight matrix
- Sharing U_i s across a NIN = 1D-Conv
- *U_i*s operate on non-overlapping patches
 - m = Filter length = Stride
 - A FC layer with shared block diagonal W



Normalisation Layers

- Normalisation layer is put after each NIN
- **Goal**: Scale down the whole set of activations and stabilises training
- Application: For unbounded-output non-linearities
- **How**:

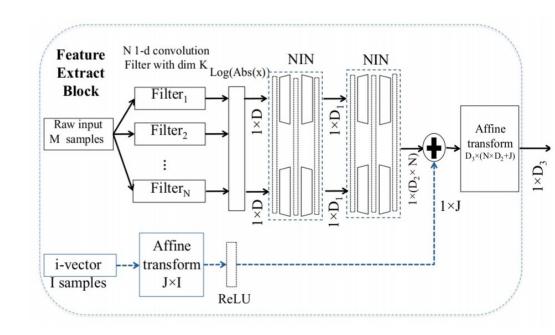
- $y_i = x_i / \sigma$ if $\sigma > 1$ else $x_i \# \sigma$ is uncentered STD of layer X (x_i : *i*th unit)

Statistics Extraction Layers

- Statistics Extraction layer
 - Computes 1st and 2nd (STD) order statistics from hidden layer activation
 - Stats computed over a moving win of \leq 200 frames (2 sec)
 - Stats are appended to the input of the next hidden layer (bias)
 - Advantages:
 - Capture long-term effect (speaker, channel, environment)
 - Hopefully helpful in alleviating sensitivity to them

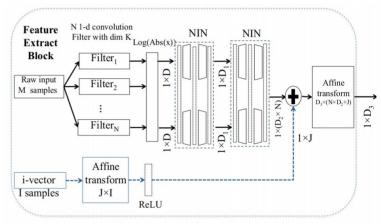
Feature Extraction Block

- 1D-Conv with #Ch = N
- Log(Abs)
- 2 NINs
- Append with iVector
- Affine Transform
 - Output dim: D₃



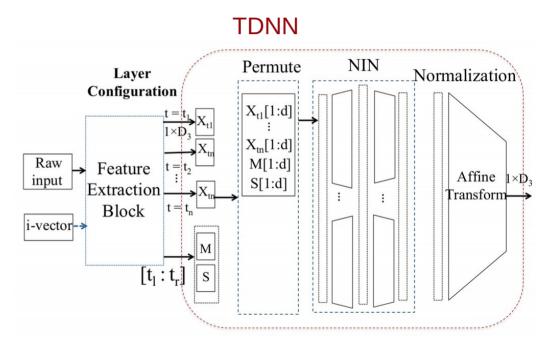
Feature Extraction Block

- 1D-Conv, N filters, Kernel_len K, Stride S
 - NIN shared across all N filters/bands
- Log (|ConvOut|) ≡ log-Fbank
- 2 NINs + norm layers
- Speaker adaptation using iVector
 - iVector \rightarrow Affine trans. \rightarrow ReLU \rightarrow Append
- Affine projection after augmentation by iVector



Classification Block

- Appended X_{t1}, ..., X_{tn} with moving stats (M & S) extracted by StatsExt layer
- Splice the features via TDNN
- One NIN layer
- Affine transformation
 - Dim reduction to D_3
- MLP \rightarrow 6 HiddLayers (ReLU)

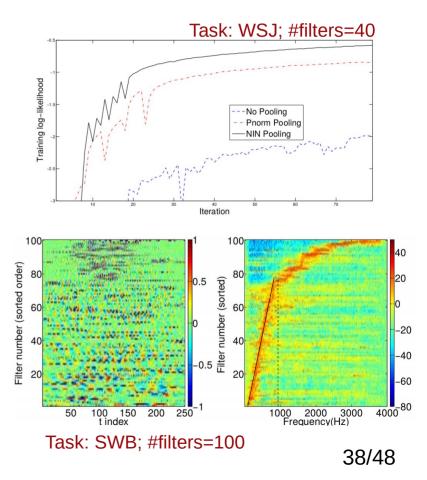


Experimental Setup

- MFCC: 40-dim, iVector: 100-dim
- Raw waveform length: M = 50ms, MVN on utterance level
- WSJ:
 - #filters=40, filter_len=30ms, stride=0.625ms (10 samples)
 - m=16, k=300, n=32, 6HL-750-ReLU
- SWB:
 - #filters=100, filter_len=31.25, stride=1.25ms (10 samples)
 - FeatureExtraction block: m=16, k=120, n=18, D₃=500, 100 micro NIN
 - Classification block: m=5, k=75, n=18, 100 micro NIN, 6HL-600-ReLU
 - lattice-free MMI
 - StatsExtractor MVN \rightarrow 99 frames on either sides

First Layer's Learned Filters

- NIN effect vs p-norm pooling
 - Faster convergence
 - Higher log-likelihood
 - Max-pooling ???
- Learned filters @ L_1
 - Bandpass filters
 - Linear < 1 kHz
 - Non-linear > 1 kHz



E. Loweimi

Experimental Results – WSJ

- WER_{MFCC} WER_{Raw} $\approx 1\%$ abs
- Raw \rightarrow used p-norm instead NIN
- Raw+NIN vs Raw
 - Worse WER, better log-like
- iVector speaker adaptation
 - improves MFCC (+9.4% RWERR)
 - degrades Raw (-5.9% RWERR*)

Table 2: WER (%) Results on WSJ LVCSR task.

Model	Nov'92 eval	Nov'93 dev
MFCC	5.28	8.29
Raw	3.95	7.34
Raw + NIN	3.92	7.6
MFCC + iVector	4.52	7.51
Raw + iVector	4.06	7.80

Experimental Results – SWB

- Raw slightly (0.1% abs) outperforms MFCC
- Using StatsExt layer is useful
 - More useful for Raw
- iVector useful for both
 - It should be "+Stats+iVector"
 - Slightly useful for Raw
 - More useful for MFCC

Table 4: WER (%) Results on Switchboard LVCSR task.

	Hu	b5'00	R	Г'03
Model	Total	SWBD	Total	SWBD
MFCC	17.5	11.6	22.1	26.6
Raw	17.4	11.5	21.7	26.5
MFCC + Stats	16.4	11.0	20.0	24.3
Raw + Stats	16.3	10.6	19.1	23.3
MFCC + iVector	15.7	10.4	19.2	23.5
Raw + iVector	16.1	10.5	18.9	23.1

– MFCC ↔ ReLU
– Raw ↔ NIN

* "... but only a little improvement in the raw waveform setup ..."

CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS

Tara N. Sainath, Oriol Vinyals, Andrew Senior, Haşim Sak

Google, Inc., New York, NY, USA {tsainath, vinyals, andrewsenior, hasim}@google.com

Learning the Speech Front-end With Raw Waveform CLDNNs

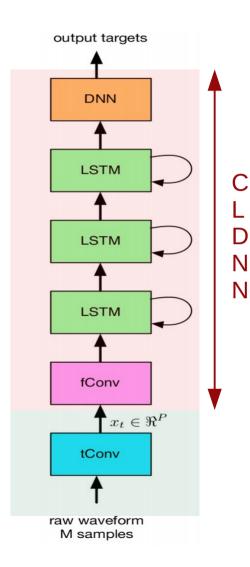
Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, Oriol Vinyals

Google, Inc. New York, NY, U.S.A {tsainath, ronw, andrewsenior, kwwilson, vinyals}@google.com

INTERSPEECH 2015

ICASSP

2015



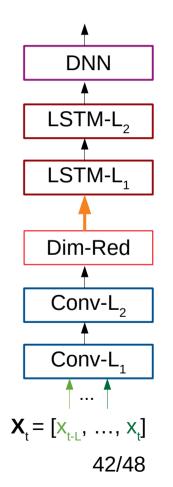
E. Loweimi

CNN, LSTM and DNN (MLP) ...

- ... are limited in their modelling capabilities ...
 - CNN \rightarrow Efficient feature extraction; Invariant to ...
 - LSTM \rightarrow Temporal/Sequential processing
 - DNN (MLP) \rightarrow Abstract representation extraction
 - Linearly separable \rightarrow class discrimination
- What is an optimal combination?
 - GMM/HMM: MFCC \rightarrow HMM \rightarrow GMM

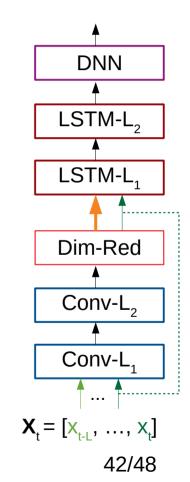
CLDNN: CNN + LSTM + DNN

- fConv: 2 Layers 2D-Conv
 - Max-pooling: non-overlapping, only L_1 , only in frequency
- Linear dim reduction (from flatten to 256)
- LSTM: 2 layers, 832 cells, projected to 512
- DNN \rightarrow 2 layers, 1024 ReLU units



CLDNN: CNN + LSTM + DNN

- fConv: 2 Layers 2D-Conv
 - Max-pooling: non-overlapping, only L₁, only in frequency
- Linear dim reduction (from flatten to 256)
- LSTM: 2 layers, 832 cells, projected to 512
- DNN \rightarrow 2 layers, 1024 ReLU units
- Multi-scale addition \rightarrow concatenate long-term representation $f(x_{t-1},...,x_t)$ with x_t



Experimental Setup

- Data: Voice Search task,
 - 200h and 2000h, clean and noisy
- Optimisation:
 - Asynchronous SGD (ASGD) + exp learning rate decay
- Architecture: variable for different experiments
 - #filters=256, max-pooling@L₁=3
- Initialisation:
 - CNN & DNN: Glorot-Bengio (Gaussian)
 - LSTM \rightarrow zero-mean, var: 1/#inputs

Experimental Results – Baselines

- DNN: FC-6L-1024-ReLU; Context: [-20,+5]
- CNN: 2LConv + FC-4L-1024-ReLU; Context: [-20,+5]
- LSTM: 2L, unroll:20, context: [-/=0,0]
- LSTM & CNN works equally well

Feature. FBarik	
Method	WER
DNN	18.4
CNN	18.0
LSTM	18.0

Eastura: EDaple

Experimental Results – Baselines

- DNN: FC-6L-1024-ReLU; Context: [-20,+5]
- CNN: 2LConv + FC-4L-1024-ReLU; Context: [-20,+5]

- LSTM: 2L, unroll:20, context: [-/,0]
 - Adding left context [-I,0] is not required!
 - Unroll=30 is not optimal
 - Adding third Layer was not useful

i caluic. i Dalik	
Method	WER
DNN	18.4
CNN	18.0
LSTM	18.0

Epaturo: ERank

Method	WER
LSTM, <i>l</i> =0, unroll=20	18.0
LSTM, <i>l</i> =10, unroll=20	18.0
LSTM, <i>l</i> =0, unroll=30	18.2

DNN-LSTM vs CNN-LSTM

- CNN+LSTM
 - Better than LSTM
- DNN+LSTM
 - Worse than LSTM

Method	WER
DNN	18.4
CNN	18.0
LSTM	18.0

Input Context	# Steps Unroll	WER CNN	WER DNN
l=0,r=0	20	17.8	18.2
l=10,r=0	20	17.6	18.2
l=20,r=0	20	17.9	18.5

• CNN is a better feature extraction

 $\begin{array}{rcl} \text{CNN} & \rightarrow & \text{LSTM} \\ \text{DNN} & \rightarrow & \text{LSTM} \end{array}$

DNN-LSTM vs CNN-LSTM

- CNN+LSTM vs DNN+LSTM
 - CNN is a better

Method	WER
DNN	18.4
CNN	18.0
LSTM	18.0

- Optimal context: [-10,0]
 - CNN & DNN need context!
 - NOT LSTM!

Input Context	# Steps Unroll	WER CNN	WER DNN
l=0,r=0	20	17.8	18.2
l=10,r=0	20	17.6	18.2
1=20,r=0	20	17.9	18.5

CNN → LSTM DNN → LSTM

LSTM + DNN

- LSTM+DNN outperform LSTM
 - Contrary to DNN+LSTM ...
 - Gain saturated after 2 FC layers
- Both CNN+LSTM & LSTM+DNN work well; combine them ...
 - CNN+LSTM \rightarrow LSTM+DNN
 - CNN \rightarrow LSTM \rightarrow DNN = CLDNN

# DNN Layers	WER	
0	18.0 (LSTM)	
1	17.8	
2	17.6	
3	17.6	

200h data, FC-1024-ReLU

Method	WER
LSTM	18.0
CNN+LSTM	17.6
LSTM+DNN	17.6
CLDNN	17.3

Multi-scale addition is useful (16.8)

Passing CNN output to both LSTM & DNN is NOT useful

WER - Gaussian Init Method LSTM

Effect of Other Factors

- Initialisation effect:
 - Uniform vs Gauss
 - Uniform is better (WER: $17.3 \rightarrow 17.0$)

C S
 T R

CLDNN	17.3		17.0	
ondola — end transmon ender totora — ender		oor die 600 e oor 320 e oordered i		
				200h

18.0

Method	WER
LSTM (Uni Init)	17.7
CLDNN, long-term feature to LSTM	17.0
+ short-term feature to LSTM	16.8
+ CNN to LSTM and DNN layers	17.0

200h

WER - Uniform Init

17.7

Training on 2000 hour + Seq Training

- Advantages of CLDNN carry over to 2000h data
- LSTM → CLDNN, CE RWERR
 - Clean: 4.1%; Multi: 4.4%
- LSTM \rightarrow CLDNN, Seq RWERR
 - Clean: 4.4%; Multi: 7.4%
- CE \rightarrow Seq, RWERR: 6% \rightarrow 10%
- Multi-scale useful only for CE

		Cicuii
Method	WER-CE	WER-Seq
LSTM	14.6	13.7
CLDNN	14.0	13.1
multi-scale CLDNN	13.8	13.1

		IVIUIU
Method	WER-CE	WER-Seq
LSTM	20.3	18.8
CLDNN	19.4	17.4
multi-scale CLDNN	19.2	17.4

Clean

N AL II+i

Next Session ...

Raw waveform modelling using CLDNN + Beamforming

Parametric CNNs for Raw Waveform Modelling

E. Loweimi

DNN LSTM LSTM LSTM fConv $x_t \in \Re^P$ tConv raw waveform M samples

output targets

That's It!

- Thanks for Your Attention!
- Q/A

