



Raw Waveform Modelling for ASR A Literature Review Part I

Erfan Loweimi

Centre for Speech Technology Research (CSTR) The University of Edinburgh Listen! 12.2.2020

ASR via Divide-and-Conquer Paradigm

- Divide into several simpler & directly solvable sub-tasks:
 - Feature extraction, Language Modelling, Acoustic Modelling
 - Solved/Optimised independently
- Feature Extraction \rightarrow human speech perception & production
- Acoustic Modelling → Sequence & Statistical Modelling

ASR via Divide-and-Conquer Paradigm

- Divide into several simpler & directly solvable sub-tasks:
 - Feature extraction, Language Modelling, Acoustic Modelling
 - Solved/Optimised independently
- Feature Extraction \rightarrow human speech perception & production
- Acoustic Modelling → Sequence & Statistical Modelling
- Raw waveform modelling premise
 - DNNs are powerful enough to solve FE and AM simultaneously

Acoustic Modelling using Raw Waveform – Advantages

- Learned vs handcrafted pipeline
 - Task-oriented
 - Optimal for the task (Jointly learned with the AM)
 - Employ all signal information
 - No info loss; Includes phase (all-pass) spectrum
 - Learning basis functions
 - Instead of Fourier transform's $exp(j\omega_k n)$
 - Mid-term processing rather than short-term processing
 - No need to accurate frame boundaries, learning masking, ...

Acoustic Modelling using Raw Waveform – Challenges

- High dimensional feature
 - DNNs as discriminative models are less sensitive to dim
 - Possible solution(s): CNN or matrix factorisation for MLP
- Using no prior knowledge about auditory system
 - Possible solution: first layer init. using prior knowledge
 - Nonparametric CNNs: Gammatone filters
 - Parametric CNNs: perceptual scales

Our Plan ...

- Part I → IDIAP + AACHEN
- Part II → Google + Multi-Resolution
- Part III → Parametric CNNs

E. Loweimi

Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural Networks

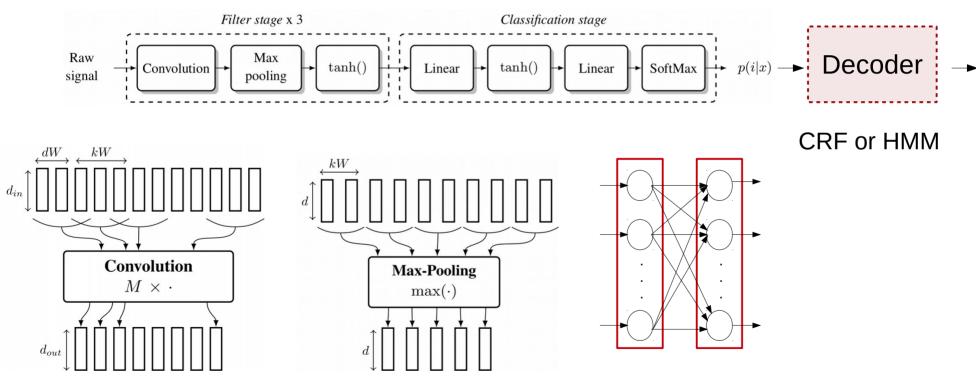
Dimitri Palaz^{1,2}, Ronan Collobert¹, Mathew Magimai.-Doss¹

¹Idiap Research Institute, Martigny, Switzerland ²Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland {dimitri.palaz, ronan.collobert, mathew}@idiap.ch

Palaz, et al, 2013 -- IDIAP

- **Goal**: Phoneme class conditional probability estimation from raw waveform
- System \rightarrow CNN+MLP
- **Baseline**: MFCC + ANN
- Task: TIMIT

Architecture

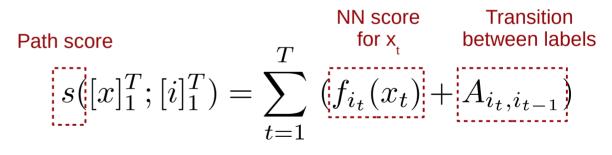


Decoder: CRF

• CRF: Discriminative model for structured prediction

E. Loweimi

- Discourage/encourage unlikely/likely sequences
- Learns transition between classes and duration modelling

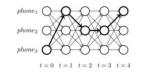


 $[j]_{1}^{T}$

argmax $s([x]_1^T, [j]_1^T, \theta)$

6/57

• At inference time \rightarrow find optimal path (Viterbi)



Experimental Setup

- Toolkit: Torch7 \rightarrow Collobert et al., 2011
- Raw wave features Normalisation \rightarrow MVN per-frame
- Hyperparameters tuning
 - Grid search on pre-specified ranges
 - Early-stopping on Dev set
- Decoding
 - CRF \rightarrow without duration constrain
 - HMM \rightarrow 3-state duration constraint + all phonemes equally probable

Number of filters per kernel (a_{out})	10-90
Number of hidden units in the class. stage	100-1500

Parameter

Input window size (ms)

Kernel width (kW)

Number of filters and leave of (1)

Range

100-700

1-9

10-90

DNN Hyperparameter Tuning

- Optimal values for MFCC:
 - Context len: 30 frames (290ms)
 - kW: L₁: 39, L₂: 5, L₃: 7
 - dW: L₁: 10, L₂: 1, L₃: 1
 - #Filters: 80
 - Pooling width: 0
 - #nodes@hiddenUnits: 500

- Optimal values for Raw:
 - Frame length: 270 ms
 - kW: L₁: 10, L₂: 5, L₃: 9
 - dW: L₁: 10, L₂: 1, L₃: 1
 - #Filters: 90
 - Pooling width: 3
 - #nodes@hiddenUnits: 500

kW: kernel width dW: stride

Hyperparameters; MFCC vs Raw

- Optimal frame length is Similar (270 vs 290 ms)
- kW-L₁: 10 vs 39 (samples) \rightarrow longer filters for Raw
- dW-L₁: both 10 (samples)
- #filters: 80 vs 90
- Pooling width: 0 vs 3 \rightarrow redundancy in Raw \rightarrow subsampling
- #Nodes in MLP \rightarrow both 500 \rightarrow same requirement at high level

Phoneme Recognition on TIMIT

- MFCC is better that Raw
- CNN is better than MLP
 - Feature: MLP \rightarrow CNN; Gain
 - MFCC (HMM): 66.65 → 70.52; +3.87
 - Raw (HMM): 38.91 → 67.88; +28.97
- CRF is better than HMM
 - Learns bigram LM over phonemes (?)
 - Gain \rightarrow Raw: 1.59%; MFCC: 1.28% abs

Features	Arch.	Decoding	Num. param.	Test acc.
MFCC	MLP	HMM	196'040	66.65
Raw	MLP	HMM	740'540	38.91
Raw	CNN	HMM	720'110	67.88
Raw	CNN	CRF		69.47
MFCC	CNN	HMM	860'700	70.52
MFCC	CNN	CRF		71.80

Phoneme Recognition on TIMIT

Systems:	System	#Classes	#Param.	Test acc.
- Baseline: MFCC → MLP[2L] → HMM	Baseline	39	196'040	66.65 %
	CNN+CRF	39	873'340	65.81 %
- CNN+CRF: Raw → CNN+MLP[2L] → CRF	CNN+CRF	117	986'680	67.84 %
 Are they comparable?! 	CNN+CRF	183	803'363	70.08 %
 Baseline is better than Raw 	– 183 = <mark>3*</mark> x	61 (TIMIT	orignal tran	scription)
	_ 117 = 3 x 3	•	•	

- High resolution class definition (for TIMIT) is better (?!)
 - Data size, CRF effect, ...

– III = 3 x 39 (61^{**} → collapsed to 39 [or 48])

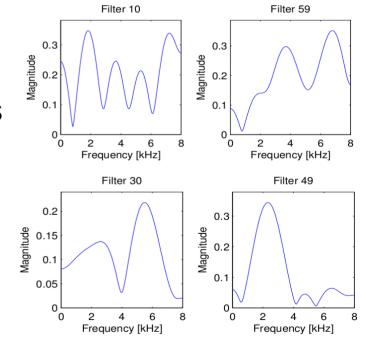
* #states per phoneme

** Too narrow description for practical uses & easy to perplex

Frequency Response of Learned Filters

- Similarity to Auditory filtering is not investigated
 - Filters are multimodal
 - Centre frequency & BW (?)
 - Difficult to compare with auditory filters

- They are "... Matching filters ..."
 - "Matched filter" is the standard term!



CONVOLUTIONAL NEURAL NETWORKS-BASED CONTINUOUS SPEECH RECOGNITION USING RAW SPEECH SIGNAL

Dimitri Palaz^{*†} Mathew Magimai.-Doss^{*} Ronan Collobert^{*}

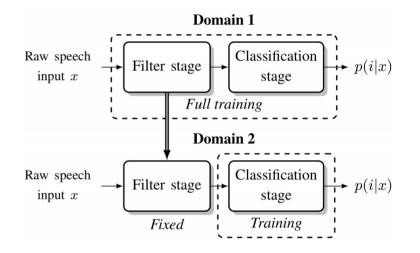
* Idiap Research Institute, Martigny, Switzerland
† Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{dimitri.palaz, mathew}@idiap.ch ronan@collobert.com

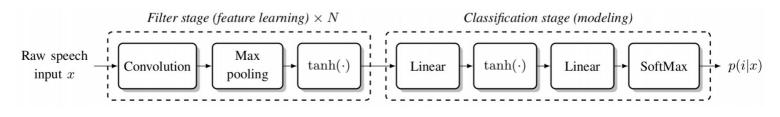
Contributions

- Scalability
 - LVCSR (WSJ SI-284)
- Feature Invariance across Domains
 - $\neg \mathsf{WSJ} \leftrightarrow \mathsf{TIMIT}$
- Filter Interpretation

Feature Invariance across Domains

- Stage 1
 - Full training on Domain 1
- Stage 2
 - Fix the front-end (CNN)
 - Train the Fully-connected (FC)





E. Loweimi

Set up – Hyperparameters

- **Parameters** $\rightarrow W_{in}, kW_n, dW_n, d_n, kW_{mp}, #hidden units$
- **Tuning** \rightarrow Early stopping on dev + Grid search
- Systems
 - CNN-1L: 3xCNN + 1 HiddenLay MLP
 - CNN-3L: 3xCNN + 3 HiddenLay MLP
- Optimal Setup for WSJ SI-284
 - W_{in} : 310ms, kW_n : first layer \rightarrow 50 samples (3ms); other layers: 5 frames (0.6ms), dW_n : 10 samples, d_n : 80-60-60 filters, kW_{mp} : 2 pooling width, 500 / 1000 hidden units

E. Loweimi

Parameters	Units	Range
Input window size (w_{in})	ms	100-700
Kernel width of the first conv. (kW_1)	samples	10-90
Kernel width of the n^{th} conv. (kW_n)	frames	1-11
Number of filters per kernel (d_{out})	filters	20-100
Max-pooling kernel width (kW_{mp})	frames	2-6
Number of hidden units in the classifier	units	200-1500

Experimental Results – LVCSR

- Raw is better than MFCC
- Deeper model is better, esp. for Raw
 - RWERR* in 1L to 3L
 - MFCC-ANN \rightarrow 8.6%
 - Raw-CNN \rightarrow 16.4%

Features System		#Params.	WER		
MFCC	ANN-1L	3.1M	7.0 %		
MFCC	ANN-3L	5.6M	6.4 %		
RAW	CNN-1L	3.1M	6.7 %		
RAW	CNN-3L	5.6M	5.6 %		

NN-xL \rightarrow x: #hidden layers, 1 or 3

- ANN vs CNN with identical #Params
 - Does it make the comparison fair?

Transfer Learning

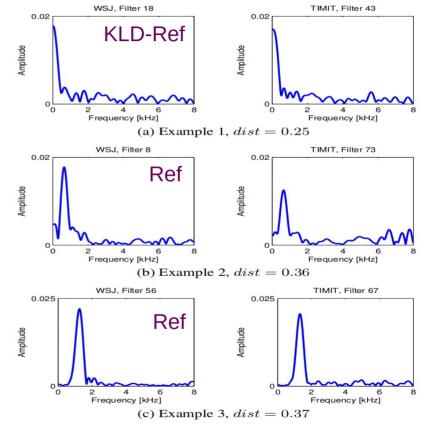
- Feature Invariance (Train domain \rightarrow Test domain)
 - Let WT = "WSJ \rightarrow TIMIT" & TW: "TIMIT \rightarrow WSJ"
- Performance loss (mismatch match)
 - WT TT $\rightarrow 0.1\%$
 - TW WW \rightarrow 3.4%

Test domain	Features	Error Rate
TIMIT	Learned on TIMIT	32.3 %
	Learned in WSJ	32.4 %
WSJ	Learned on WSJ	6.7 %
	Learned on TIMIT	10.1 %

Features trained on WSJ work well for TIMIT, not vice versa!

WSJ and TIMIT Filters Comparison

- Comparison of learned filters
 - Similarity measure: KLD
- Some domain invariance ...
 - Is this comparison meaningful?
 - Recall WT and TW
- No significant activity at f > 2kHz



Analysis of CNN-based Speech Recognition System using Raw Speech as Input

Dimitri Palaz^{1,2}, Mathew Magimai.-Doss¹, Ronan Collobert^{3,1}

¹Idiap Research Institute, Martigny, Switzerland
²Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
³Facebook AI Research, Menlo Park, CA, USA
{dimitri.palaz, mathew}@idiap.ch, ronan@collobert.com

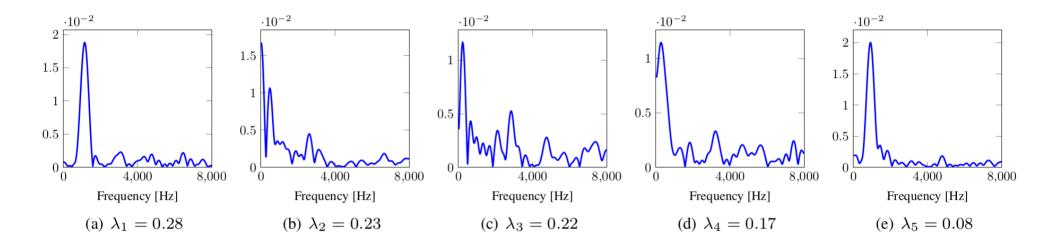
Contributions

- Investigate performance in match and mismatch conditions
 - TIMIT+Noise & Aurora-2
- Further interpretation
 - Average Frequency Response for Vowels
 - Filter Analysis

Filter Analysis

- Compute Vowel Average Frequency Response
 - 1) *n* = zeros(*num-vowels*, *num-filters*)
 - 2) For *i*, *vowel* in enumerate(*Vowels*):
 - 1) Propagate centre frame of *vowel* into the NN
 - 2) j = argmax to find most firing filter # j is index of most firing filter
 - 3)n[i,j] += 1 # number of times filter j is triggered when vowel i is propagated
 - 3) Keep the five most firing filters for each vowel and normalise the counts $\lambda_i = n_i / \Sigma_j n_j$
 - 4) Compute weighted mean of Filters using normalised counts (λ_i)

Filter Analysis for vowel /iy/

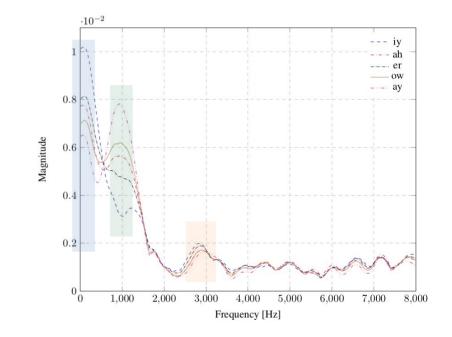


Five most firing filters, with their *proportion factor* (λ) for *liyl*

bean

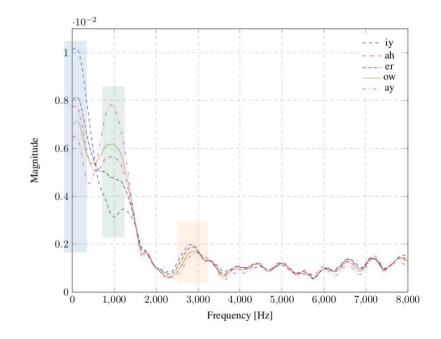
Average Frequency Response

- Task \rightarrow TIMIT phone recognition
- Data → TIMIT DevSet
- Vowels \rightarrow /iy/, /ah/, /er/, /ow/ and /ay/



Average Frequency Response

- Task \rightarrow TIMIT phone recognition
- Data → TIMIT DevSet
- Vowels \rightarrow /iy/, /ah/, /er/, /ow/ and /ay/
- How similar the spectrum is to vowels power spectrum?
- Formant structure ...
 - Many vowels have the same
 F1, F2 and F3!!!



Mismatch Scenario – TIMIT

- TIMIT Multi-style training (NOT NTIMIT!)
 - Noise added via FaNT
 - Noise signals \rightarrow NoiseX-92 database
 - Train Noise: Car, Operation, Lynx, Minigun; SNR: 5-20 dB + clean
 - Test Noise: F-16 and Factory; SNR: 0 to 30 dB
- Baseline → MFCC (w/o normalisation!!!) + ANN-1L [500 nodes]
- Raw: CNN-L3 + ANN-L2 [500 nodes]

Mismatch Scenario – TIMIT

- Mismatch (Clean)
 - Raw outperforms MFCC \ge 10 dB
- Match (Multi)
 - Raw outperforms MFCC at all SNRs

SNR [dB]	AN	NN	CNN			
Training	clean	multi	clean	multi		
30dB	52.5	54.3	65.5	66.8		
25dB	46.7	50.8	59.7	64.8		
20dB	40.3	46.6	50.5	60.8		
15dB	32.7	41.1	39.1	53.5		
10dB	26.1	34.2	27.8	42.8		
5dB	21.2	26.4	18.3	30.8		
0dB	17.4	20.2	9.9	21.4		

Phone Recognition Rate (PRR) ANN ↔ MFCC CNN ↔ Raw

Mismatch Scenario – Aurora-2

AININ + IVIF		$IIN \leftrightarrow \Gamma$	avv											
		Test A						Test B						
SNR [dB]	clean	20	15	10	5	0	-5	clean	20	15	10	5	0	-5
		Clean Training												
ANN	96.9	86.1	74.1	51.4	25.5	13.9	10.1	97.4	87.3	77.8	59.8	33.5	15.0	8.9
CNN	97.3	88.3	76.1	53.0	24.7	11.2	8.0	97.2	90.4	83.2	64.9	38.7	19.1	10.1
		Multi-conditional Training												
ANN	92.1	91.6	89.0	83.4	70.0	38.2	14.5	92.1	85.1	80.9	73.8	59.7	34.1	14.5
CNN	97.6	97.4	96.6	93.9	84.8	55.1	19.5	97.6	94.8	93.4	89.0	77.4	48.0	18.7

ANN ↔ MFCC , CNN ↔ Raw

- Clean Training (Mismatch)
 - TestSet A: Raw outperform MFCC → SNR ≥ 10 dB
 - TestSet B: Raw outperforms MFCC, at all SNRs

- Multi-condition Training
 - Raw (CNN) outperforms MFCC (ANN), at all SNRs

Conclusion for TIMIT and Aurora-2

- In clean training (mismatch) condition
 - Raw outperforms MFCC \ge 10 dB
- In multi-condition (match) scenario
 - Raw outperforms MFCC at ALL SNRs
- Comparison is not fair!!!
 - Shallow ANN vs Deep CNN
 - MFCCs are not normalised

Lehrstuhl Informatik 6 Human Language Technology and Pattern Recognition

Acoustic Modeling with Deep Neural Networks Using Raw Time Signal for LVCSR

Zoltán Tüske¹, Pavel Golik¹, Ralf Schlüter¹, Hermann Ney^{1,2}

¹Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany
²Spoken Language Processing Group, LIMSI CNRS, Paris, France

{tuske,golik,schlueter,ney}@cs.rwth-aachen.de

Contributions

- Raw waveform modelling on LVCSR tasks
- Comparison with many conventional featurs
 - MFCC, FBANK, PLP, GT and [FFT]
- MLP for acoustic modelling
- Investigation of data amount and activation function roles
- Interpretation of learned filters

Experimental Setup

- Training data from *Quaero* project
 - Training set: 50 and 250h, DevSet and Testset 3.5h, each
- Language model: 4-gram
- DNN: MLP with 6 hidden layers (2k units) \rightarrow 30-35M parameters
- DNN initialisation: Discriminative pre-training (DPT)
- DNN input feature: 17 stacked frames \sim 185 ms
- Toolkit: RASR
- Baseline: GMM-HMM \rightarrow 30M trainable-parameters
- MFCC per frame: LDA on 9 consecutive frames \rightarrow 45 features per frame
 - MVN norm

Experimental Results – 50h

- DNN is better than GMM
 - ~ 20 %, relative
- Raw \rightarrow significantly worse
 - \sim 16-20% relative to GMM
 - $\sim 45-50\%$ relative to DNN

			9
Features	model	dev	eval
MFCC	GMM	24.4	31.6
MFCC	DNN	19.4	25.3
time signal	DNN	29.4	36.8

50h training data

Effect of Each Stage of MFCC (Relative)

- Best feature: MFCC; Worst: Raw
- MFCC utterance norm \rightarrow RWERR*<2.2%
 - VTLN \rightarrow < 1%
- MFCC-dim.: $16 \rightarrow 20 => RWERR < 1.5\%$
- CRBE slightly worse than MFCC
 - 20 filters is better than 40!
- |FFT| \rightarrow worse than MFCC and CRBE
 - |.|^{0.1} slightly helps despite huge statistical effect!
- Utter-norm is better than global norm

Features	dim.	dev	eval
MFCC	16		
+ global norm.		19.8	26.1
+ utterance norm.		19.7	25.5
+ VTLN		19.4	25.3
MFCC	20		
+ VTLN + utterance norm.		19.1	25.2
CRBE			
+ VTLN + utterance norm.	20	19.5	25.7
	40	19.7	26.2
FFT	257		
+ global norm.		21.3	27.8
+ 10th root		21.0	27.5
+ utterance norm.			
+ 10th root		20.6	26.8
time signal	160		
+ global norm.		29.4	36.8
+ utterance norm.		28.9	35.0

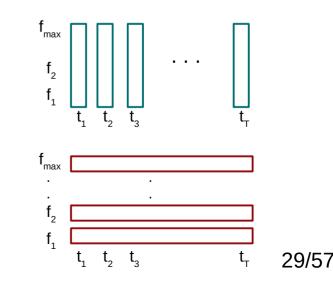
MFCC vs PLP and GT

- Performance on Dev
 - MFCC, PLP = GT*
- Performance on Eval
 - PLP, MFCC, GT
- Feature combination is helpful
 - Info redundancy or complementary
 - MFCC/PLP are FT-based, GT is not

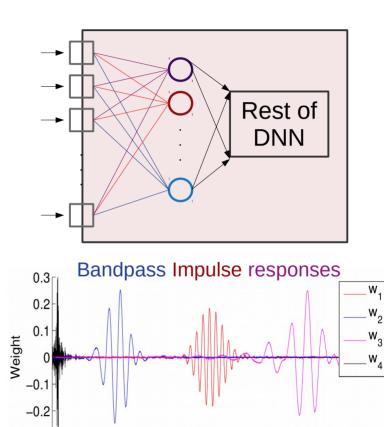
GT*: GammaTone Feature, Schulter et al, 2007

DNN + VTLN + Utter-level norm

Features	dev	eval
MFCC	19.1	25.2
PLP	19.2	24.8
GT	19.2	25.5
MFCC + PLP + GT	18.4	24.2



- First layer \rightarrow filterbank \rightarrow time-frequency analysis
- Filters aren't symmetric & centred
- Some filters are just **shifted** replica



1000

1500

Time [samples]

2000

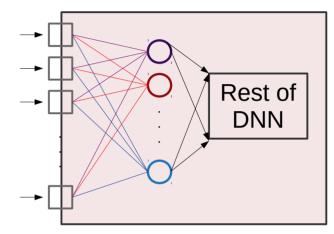
2500

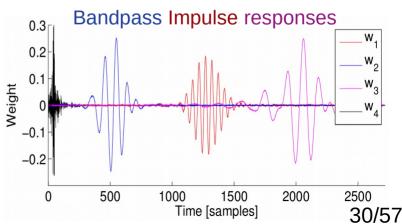
30/57

500

0

- First layer frequency ank → time-
- Filters aren³AHA? stric & centred
- Some filters are just shifted replica
- Interpretation
 - Similar magnitude, different phase
 - Emulate shifting in CNNs!
 - CNNs do not shifted replica! ===>>> fewer parameters



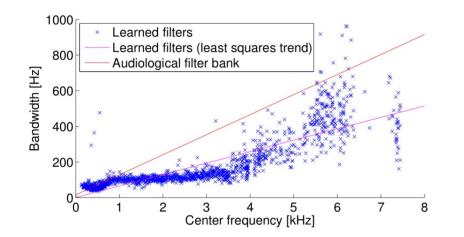


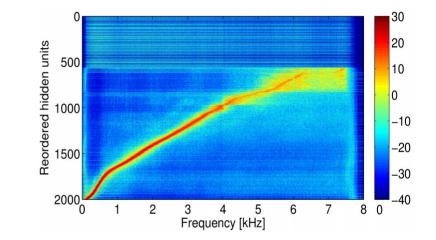
- Sort the filters based on f_c
 - $f_c \approx \text{argmax of freq response } (W_i)$
 - $g \rightarrow Gaussian \ kernel \rightarrow low-pass \ filter$

- Compute the bandwidth (f_b)
 - Using Noise Equivalent Bandwidth

 $y_i = \boldsymbol{w}_i^T \ \boldsymbol{x}$ $oldsymbol{W}_i = |FFT\{w_i, :\}|$ $oldsymbol{\hat{W}}_i = oldsymbol{W}_i * g$ $f_c^i = \operatorname*{argmax}_j oldsymbol{\hat{W}}_{i,j}$

 $f_b^i = \frac{\sum_j W_{i,j}^2}{\max_j W_{i,j}^2}$





- * Filters are unimodal, bandpass and narrow
- * Filters' Bandwidth ...
 - Varies between 100-1000 Hz
 - Trend-wise increases by centre freq

Using ReLU instead of Sigmoid

- Relative gain on Eval Set
 - MFCC \rightarrow 5.5%
 - Combination \rightarrow 10%
 - |FFT| → 7.8%
 - Raw \rightarrow 18.6%
- Highest relative gain for Raw, Why?
 - ReLU's sparsity is good for high dim(?)
 - [FFT] is high-dim, but MFCC level gain!

Features	dev		eval	
	sigmoid	ReLU	sigmoid	ReLU
MFCC	19.1	18.0	25.2	23.8
MFCC + PLP + GT	18.4	16.6	24.2	21.7
FFT	20.6	18.4	26.8	24.7
time signal	28.9	22.6	35.0	28.5

Relative Gain on Eval

- MFCC \rightarrow 5.5%;
- Combination \rightarrow 10%
- $-\left|\mathsf{FFT}\right|\ \rightarrow\ 7.8\%$
- $\text{Raw} \rightarrow 18.6\%$

Relative gain of ReLU for 50 & 250h

- ReLU gain* for 50 & 250
 - MFCC \rightarrow 5.5 vs -3.4%
 - Combination \rightarrow **10.3** vs **4.5**%
 - $|FFT| \rightarrow 7.8 \text{ vs} +0\%$
 - Raw \rightarrow 18.6 vs 8.2%

• ReLU is less useful when more data is available

Features	dev		eval		
	sigmoid	ReLU	sigmoid	ReLU	
MFCC	19.1	18.0	25.2	23.8	
MFCC + PLP + GT	18.4	16.6	24.2	21.7	
FFT	20.6	18.4	26.8	24.7	
time signal	28.9	22.6	35.0	28.5	

250h

50h

				25011	
Features	dev	V	eval		
	sigmoid	ReLU	sigmoid	ReLU	
MFCC	15.2	15.9	20.4	21.1	
MFCC + PLP + GT	14.8	14.0	19.8	18.9	
FFT	16.1	15.8	21.6	21.5	
time signal	19.2	17.6	25.6	23.5	

Relative gain of 250h for Sigm & ReLU

- $50 \rightarrow 250$ relative gain; Sigm vs ReLU
 - MFCC \rightarrow 19.0, 11.3
 - Combination \rightarrow 18.2, 12.9
 - |FFT| → **19.4**, 13.0
 - Raw \rightarrow 26.9, 17.5
- Sigmoid further benefits from data
- Data amount is more important than activation function

				50 h	
Features	de	V	eval		
	sigmoid	ReLU	sigmoid	ReLU	
MFCC	19.1	18.0	25.2	23.8	
MFCC + PLP + GT	18.4	16.6	24.2	21.7	
FFT	20.6	18.4	26.8	24.7	
time signal	28.9	22.6	35.0	28.5	

250h

Features	dev		eval		
	sigmoid	ReLU	sigmoid	ReLU	
MFCC	15.2	15.9	20.4	21.1	
MFCC + PLP + GT	14.8	14.0	19.8	18.9	
FFT	16.1	15.8	21.6	21.5	
time signal	19.2	17.6	25.6	23.5	

Performance Gap: Raw vs MFCC

- Performance gap = WER_{RAW} WER_{MFCC}
 - 50h, Sigmoid \rightarrow 9.8%
 - 50h, ReLU \rightarrow 4.7%
 - 250h, Sigmoid \rightarrow 5.2%
 - 250h, ReLU \rightarrow 2.4%
- Applying ReLU halves the gap (relative to sigmoid)
- Using 5x more data $[50 \rightarrow 250h]$ halves the gap

Effect of First layer Initialisation

- Initialisation with GT filters
 - 32 filters (i) + shifted copies
 - No update \rightarrow fixed first layer
- Init. with GT has almost no effect
 - Note: Filters are not learned as parametric (f_c, BW) models!
- Fixing first layer worsen the results
 - Eval \rightarrow 2.4% abs, 8.4% rel

Weight initialization	update allowed	dev	eval
random	yes	22.6	28.5
GT	yes	22.4	28.7
	no	24.9	31.1

$$\begin{aligned} f_c^i &= 228.85(\exp(i/9.265) - 1) \\ f_b^i &= 24.7 + \frac{f_c^i}{9.265} \\ i &= 1, 2, ..., 32 \\ \text{order} &= 4 \\ h^i(t) &= t^{n-1} \exp(-2\pi f_b^i t) \cos(2\pi f_c^i t + \phi_i) \end{aligned}$$

Lehrstuhl Informatik 6 Human Language Technology and Pattern Recognition

Convolutional Neural Networks for Acoustic Modeling of Raw Time Signal in LVCSR

Pavel Golik¹, Zoltán Tüske¹, Ralf Schlüter¹, Hermann Ney^{1,2}

¹Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany ²Spoken Language Processing Group, LIMSI CNRS, Paris, France {golik,tuske,schlueter,ney}@cs.rwth-aachen.de

Contributions

- First layer \rightarrow bank of bandpass filters \rightarrow time-freq analysis
- Performance gap between raw and MFCC reduced by using ReLU and more training data
- This paper
 - Replacing MLP with CNN
 - Further interpretation of learned filters

Experimental Setup

- Training data: Quaero, English, train11
- Dev and Eval sets: 3.5h
- LM: 4-gram
- Random initialisation + layer-wise discriminative pre-training
- MFCC \rightarrow 45 dim, LDA on 9 consecutive frames
- Toolkit: RASR
- HMM-GMM parameters: 30M
- DNN input, 2000 ReLU unites per layer
 - Baseline: MFCC of 17 stacked frames
 - Raw: 10ms x 17 => 170 ms, frame shift = 10
- Conv layer: kernel len: 256 samples (16 ms), stride: 31 samples (2 ms), #channels = 128

Experimental Results

- Baseline
 - MFCC: GMM → DNN [30%]
 - Raw: $9 \rightarrow 12$ layers
 - RWERR: Dev 1.9%, Eval 3%

Features	model	# hidden layers	dev	eval
MFCC	GMM	-	24.4	31.6
	DNN	9	16.9	22.1
time signal	DNN	9	20.7	26.3
	DNN	12	20.3	25.5

1Conv+ MLP-xL

- 1Conv layer + MLP
 - 1Conv+MLP-5L ≈ MLP-12L

		Fully connected layers						
		5	7	8	9	10	11	12
de	ev	20.3	19.5	19.1	18.9	18.6	18.7	18.5
ev	val	25.6	25.1	24.3	24.3	24.1	23.9	24.0

- [WER] A conv layer \equiv 7 MLP layers
- 1Conv+MLP-12L → rel. gain 5.9%

Conv Layer Hyperparameters Effect

- Conv. kernel length (k) is not a critical choice
 - 8-64ms filters \rightarrow similar WER
 - No need to multi-resolution!
- Adding second conv layer slightly improves the results; ~ 2% relative

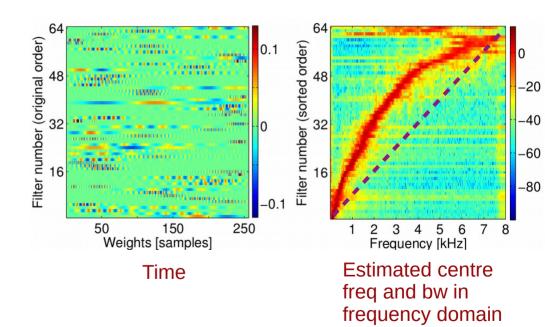
1CNN + MLP-10L

	Filter length k in samples						
	128	256	512	1024			
dev	18.8	18.6	18.8	18.9			
eval	24.2	24.1	24.1	24.3			

number of 1	WER [%]			
convolutional	convolutional fully connected			
1	10	18.6	24.1	
	11	18.7	23.9	
	12	18.5	24.0	
2	10	18.3	23.6	
	11	18.2	23.4	

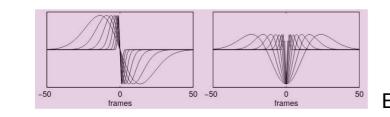
Learned Filters of Conv-L1

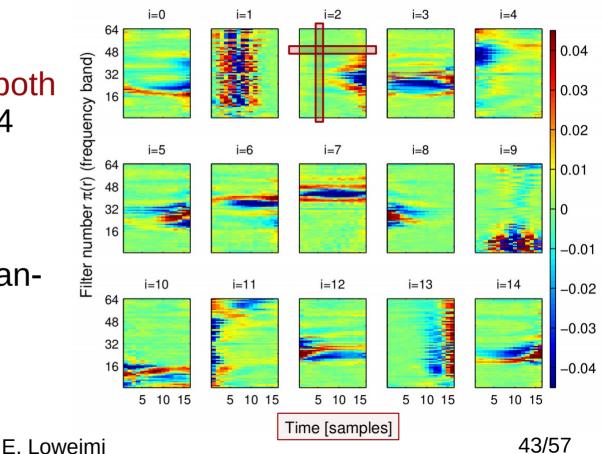
- A bank of bandpass(?) filters
 - Time-frequency analysis
- Some similarity to auditory filters
 - More filters in low frequencies
 - *f_c* is a sub-linear function of (sorted) filter index
 - 78% of filters are below 4 kHz
 - BW increases with f_c , trend-wise



Learned Filters of Conv-L2

- Recognisable Patterns
 - Non-stationary (?) in both directions \rightarrow 0,8,10,14
 - Time-invariant \rightarrow 7
 - Matched filter
 - MRASTA and Gaussian-like \rightarrow 1,9,13





Lehrstuhl Informatik 6 Human Language Technology and Pattern Recognition

ACOUSTIC MODELING OF SPEECH WAVEFORM BASED ON MULTI-RESOLUTION, NEURAL NETWORK SIGNAL PROCESSING

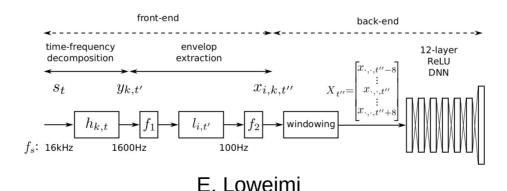
Zoltán Tüske, Ralf Schlüter, Hermann Ney

Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany

{tuske, schlueter, ney}@cs.rwth-aachen.de

Contributions

- Generalising the downsampling and env-extractor block (Max-Pooling) and make it trainable
 - EnvExtractor: Rectifier + Low-pass filter
- Learning multi-resolution spectral representation
 - Time-freq analysis with multiple spectro-temporal resolutions



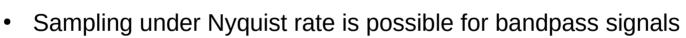
Max-Pooling

600

400 200

Center frequency [kHz]

- Performs subsampling and Lowpass filter for env. Aliasing extraction Learned filters Learned filters (least squares trend) 800 Audiological filter bank Bandwidth [Hz]
- Subsampling could lead to aliasing
 - Baseband vs bandpass sampling



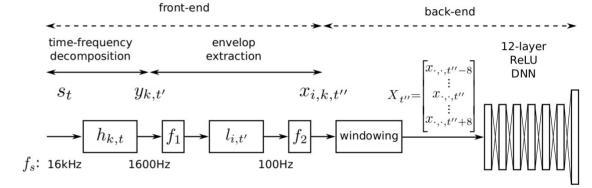
- E.g. for 1ms stride \rightarrow sampling rate [Approximately] is 1 kHz
 - Undersampling for BW > 500 Hz
 - Oversampling for BW < 500 Hz

Multi-resolution Signal Process. via NNs

E. Loweimi

- 1) $h_{k,t}$: Impulse response of k^{th} FIR filter with N_{TF} taps (1D-ConvLayer1) \rightarrow Time-frequency (TF) analysis
 - Shared over time, similar to TDNN
- 2) Stride by 10 samples
 - Subsampling by factor 10 (t=10ť)
- 3) f_1 : half (ReLU) or full (Abs)
- Inpulse response of *i*th FIR filters with N_{ENV} taps (1D-ConvLayer2)
 - Trainable env-extractor + Multi-Resolution Proc.
 - Shared over time and TF filters
- 5) Stride by 16 samples
 - Subsampling by factor 16 (t=160 t")
- 6) f₂: Rectification + non-linearity (log/root)
 - Its output, $x_{k,i,t''}$ interpretable as CRBE

7) Windowing \rightarrow Feature-dim: K x L x (2x8+1)



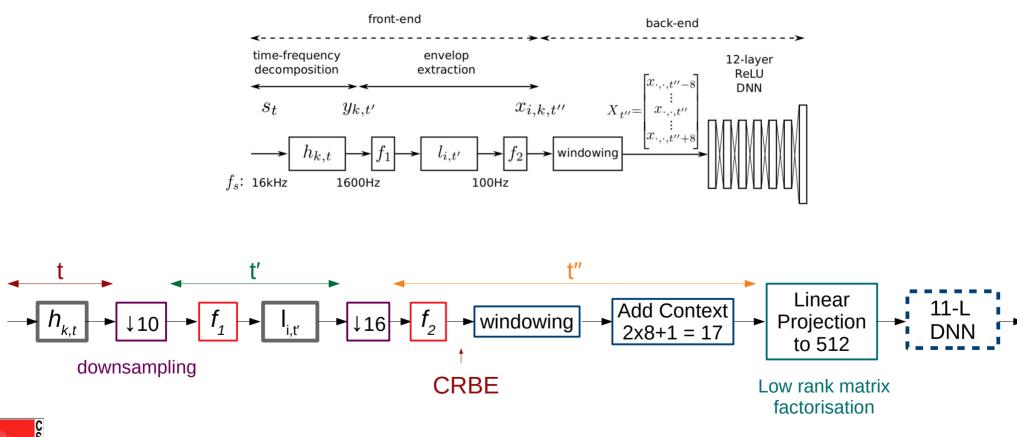
$$y_{k,t'} = s_t * h'_{k,t} \stackrel{\text{FIR}}{=} \sum_{\tau=0}^{N_{TF}-1} s_{t+\tau-N_{TF}+1} \cdot h_{k,\tau}$$
$$x_{i,k,t''} \stackrel{\text{FIR}}{=} f_2 \left(\sum_{\tau=0}^{N_{ENV}-1} f_1(y_{k,t'+\tau-N_{ENV}+1}) \cdot l_{i,t} \right)$$

(Mirrored and) Shifted

/57

Context length

Pipeline



E. Loweimi

46/57

Experimental Setup

- Training: CE, SGD+Momentum, I_2 reg., discriminative pre-training
- TF filters: 150 filters with N_{TF} =512 samples (32 ms)
- $I_{i,t'} \rightarrow 16 < N_{ENV} < 40$ samples, 5 < #filters [denoted by <math>max(i)!!!] < 20
- Training data: 250h, Dev and Eval: 3h each
- Toolkit: RASR
- Architecture: CNN front-end + 12-layer MLP with 2000 ReLU units
- Low-rank linear factorisation at the first layer to 512
 - Feature-dim = K x L x M, e.g. 150 x 20 x 17 = 51000
 - K: #filters@L1, L: #filters@L2, M: Context_Len

Experimental Setup – Single EnvExt

- GT is better than Raw
- Second Conv-L is useful
- Trainable env-extractor is as effective as Max-pool
- N_{ENV} is not a critical param.
 - Overlapping max-pooling for N_{ENV} > 16 (Stride@L2 is 16)
 - No significant effect

$I_{i,t}$	N _{ENV}	WER				
type	/VENV	dev	eval			
	16	14.4	19.9			
max	25	14.3	19.8			
	40	14.4	19.7			
FIR	40	14.1	19.8			
Ga	mmatone	13.5	18.4			
time-	signal DNN	15.1	20.5			

- #TF=50, f_1 =| . |, f_2 =| . |^{0.4}
- Single envelope detector
- time-signal DNN \rightarrow using only one conv layer

Experimental Setup – Multiple EnvExt

- #TF: 50 \rightarrow 150, WER: 19.8 \rightarrow 19.3
- *Abs* is slightly better than *ReLU*
- N_{ENV} is not a critical param., but should not be too large (e.g. 160)
- Root comp. helpful when $N_{ENV} \le 40$
- Optimal setup
 - max(i)=5, N_{ENV}=40, $f_1=|.|, f_2=|.|^{0.4}$
 - For GT features is 0.1

$\max(i)$	N _{ENV}	f_1	f_2	WER		
	¹ VENV	J^{\perp}	J 2	dev	eval	
		ReLU	-	14.2	19.6	
		ReLU	ReLU	14.2	19.5	
	40	ReLU	ReLU+root	14.0	19.2	
5		Abs	-	14.2	19.6	
		Abs	Abs	14.2	19.3	
		Abs	Abs+root	13.7	18.7	
		Abs+root	Abs	13.8	18.7	
10	80	Abs	Abs	13.9	19.0	
10	80	Abs+root	Abs	13.8	19.0	
20	160	Abs	Abs	14.3	19.3	
		Abs	Abs+root	14.4	19.6	

– #TF: 150

– max(i): #filters of Conv-L2

Transfer Learning + MVN

- Front-end learned for MLP and fixed
- MVN on segment level
 - − Fix learned front-end \rightarrow Dump & normalise features \rightarrow Learn backend again (MLP & LSTM)
- NN_1 : features + context (17) \rightarrow low-rank factorization layer
- NN₂: ONLY x_{i,k,t"} w/o context [LSTM]

front-end		back-	norm	alization	WER [%]		
type	dim.	end	mean	variance	dev	eval	
NN ₁	512				13.7	18.7	
11111	512	MLP	×	Х	13.5	18.5	
GT	70		×		13.1	17.8	
					14.5	18.7	
NN_1	512		×		14.5	19.1	
			×	Х	13.0	16.8	
NN ₂	750	LSTM	×		13.0	17.1	
11112	750		X	Х	13.9	18.1	
			×	Х	11.3	14.5	
GT	70		×		11.6	14.9	
					11.2	14.6	

Baseline, first raw, best system from previous table max(i)=5, N_{ENV} =40, f_1 =|.|, f_2 =|.|^{0.4} NN2 \rightarrow 750 = 150 (k) x 5 (L)

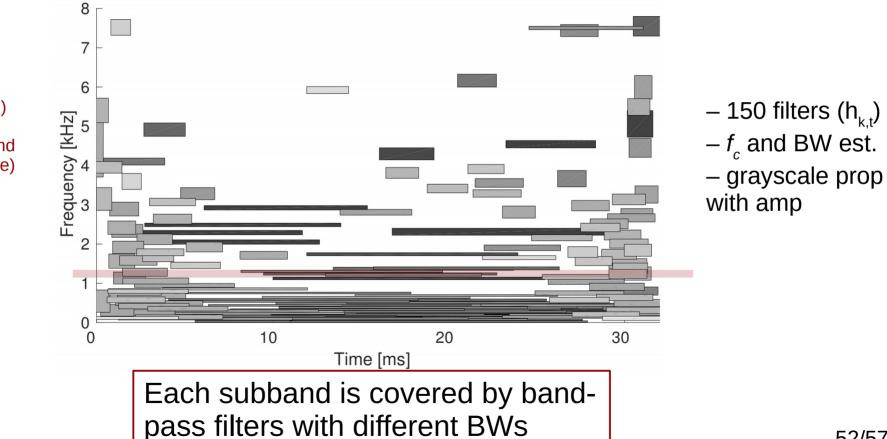
Transfer Learning + MVN

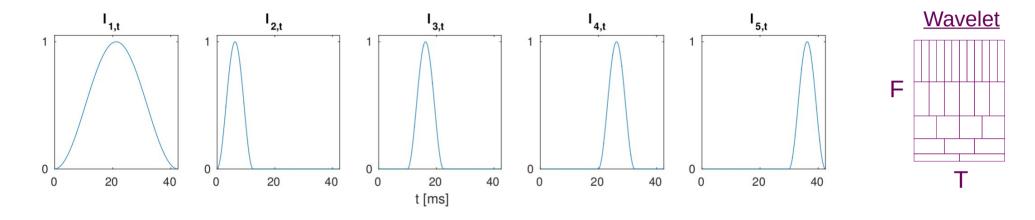
- GT is better than raw
- LSTM for NN₁
 - MN worsen, MVN improves
 - Front-end is learned based on MLP and is fixed (Mismatch!)
- Using LSTM is useful for $NN_2 \& GT$
 - Both are w/o context
 - LSTM takes care of context!

front-end		back-	norm	alization	WER [%]		
type	dim.	end	mean	variance	dev	eval	
NN ₁	NN ₁ 512				13.7	18.7	
	512	MLP	X	×	13.5	18.5	
GT	70		×		13.1	17.8	
		LSTM			14.5	18.7	
NN_1	512		×		14.5	19.1	
			×	Х	13.0	16.8	
NN ₂	750		×		13.0	17.1	
11112	750		X	×	13.9	18.1	
			X	Х	11.3	14.5	
GT	70		X		11.6	14.9	
					11.2	14.6	

Multi-Resolution Processing in TF Stage

Fc, BW (in freq) and Pulse centre and duration (in time) are estimated

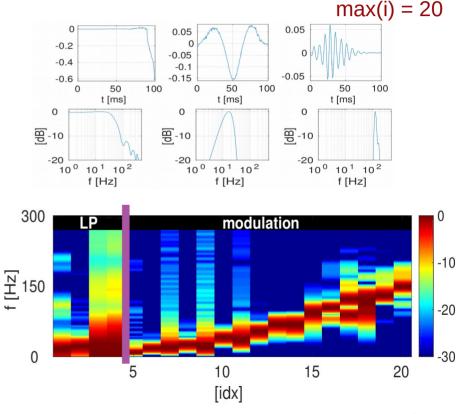




- These are hypothetical, not learned, filters impulse responses. Wavelet-like processing
 - I_1 : deals with slowly varying components (low freq)
 - $I_{2:5}$: deals with faster varying components + localisation

Envelope Detection Filters

- Learned I_{i,t}s are Lowpass (LP) and bandpass (Modulation) filters!
 - Separated based on energy@0Hz
- Filters sorted based on the highest 3 dB cut-off frequency (not argmax)
- Here, Modulation frequency range is 0-200 Hz
 - 1-50Hz covers the modulation content of speech signal [33]



CRBEs



Features Fine-tuned		Beamformed	Dev					Eval				
reatures rine-tuned	Deamormed	Bus	Caf	Ped	Str	Avg.	Bus	Caf	Ped	Str	Avg.	
	-	19.7	14.2	9.7	13.7	14.3	30.4	25.2	20.2	16.6	23.1	
MFCC	-	+	12.2	10.9	8.6	10.6	10.6	19.0	16.6	14.7	13.8	16.0
	+	-	19.4	13.6	9.1	14.4	14.1	32.2	25.7	21.1	17.9	24.2
		+	10.4	9.1	6.6	9.2	8.8	17.0	14.2	12.4	12.2	13.9
	-	-	30.7	19.9	17.5	21.3	22.4	63.6	38.6	34.0	25.0	40.3
raw TS		+	30.1	15.6	16.1	17.9	19.9	49.9	27.4	24.3	23.6	31.3
	+	-	27.8	27.3	19.0	24.9	24.7	51.9	48.9	39.8	26.1	41.7
		+	14.8	11.8	8.8	11.7	11.8	29.5	21.5	18.6	16.3	21.5

- MFCC outperforms with a significant margin on this task
 - 40% Relative lower WER

T. Menne, Z. Tüske, R. Schlüter, and H. Ney. *Learning Acoustic Features* from the Raw Waveform for Automatic Speech Recognition, 2018

Part I – Conclusion

- Conventional features are still better
- Architecture is important (CNN rather than MLP)
- Data amount and activation function can narrow the gap
- Interpretability
 - First layer \rightarrow time-frequency analysis
 - Second layer \rightarrow modulation spectrum processing
 - Filters resemble auditory filters
 - More filters in low frequency, wider filters in high frequencies

End of Part I

- Thanks for Your Attention!
- Q/A

- Part II (Next week): Google + Multi-Resolution
- Part III: Parametric CNNs

