

Erfan Loweimi

Centre for Speech Technology Research (CSTR)
The University of Edinburgh

Listen! 12.2.2020

Raw Waveform Modelling for ASR
A Literature Review

Part I

ASR via Divide-and-Conquer Paradigm
● Divide into several simpler & directly solvable sub-tasks:

– Feature extraction, Language Modelling, Acoustic Modelling
– Solved/Optimised independently

● Feature Extraction → human speech perception & production

● Acoustic Modelling → Sequence & Statistical Modelling

E. Loweimi 1/57

ASR via Divide-and-Conquer Paradigm
● Divide into several simpler & directly solvable sub-tasks:

– Feature extraction, Language Modelling, Acoustic Modelling
– Solved/Optimised independently

● Feature Extraction → human speech perception & production

● Acoustic Modelling → Sequence & Statistical Modelling

● Raw waveform modelling premise
– DNNs are powerful enough to solve FE and AM simultaneously

E. Loweimi 1/57

● Learned vs handcrafted pipeline
– Task-oriented

● Optimal for the task (Jointly learned with the AM)

– Employ all signal information
● No info loss; Includes phase (all-pass) spectrum

– Learning basis functions
● Instead of Fourier transform's exp(jωkn)

– Mid-term processing rather than short-term processing
● No need to accurate frame boundaries, learning masking, ...

Acoustic Modelling using
Raw Waveform – Advantages

E. Loweimi 2/57

Acoustic Modelling using
Raw Waveform – Challenges

● High dimensional feature
– DNNs as discriminative models are less sensitive to dim
– Possible solution(s): CNN or matrix factorisation for MLP

● Using no prior knowledge about auditory system
– Possible solution: first layer init. using prior knowledge

● Nonparametric CNNs: Gammatone filters
● Parametric CNNs: perceptual scales

E. Loweimi 3/57

Our Plan ...
● Part I → IDIAP + AACHEN
● Part II → Google + Multi-Resolution
● Part III → Parametric CNNs

E. Loweimi

Palaz, et al, 2013 -- IDIAP
● Goal: Phoneme class conditional probability

estimation from raw waveform
● System → CNN+MLP
● Baseline: MFCC + ANN
● Task: TIMIT

E. Loweimi 4/57

Architecture

Decoder

CRF or HMM

.

.

.

.

.

.

 5/57

Decoder: CRF
● CRF: Discriminative model for structured prediction

– Discourage/encourage unlikely/likely sequences

– Learns transition between classes and duration modelling

● At inference time →find optimal path (Viterbi)

NN score
for x

t

Transition
between labelsPath score

E. Loweimi 6/57

Experimental Setup
● Toolkit: Torch7 → Collobert et al., 2011
● Raw wave features Normalisation→MVN per-frame
● Hyperparameters tuning

– Grid search on pre-specified ranges
– Early-stopping on Dev set

● Decoding
– CRF → without duration constrain
– HMM → 3-state duration constraint + all phonemes equally probable

E. Loweimi 7/57

https://github.com/soumith/cvpr2015/blob/master/cvpr-torch.pdf

DNN Hyperparameter Tuning

● Optimal values for Raw:
– Frame length: 270 ms

– kW: L1: 10, L2: 5, L3: 9

– dW: L1: 10, L2: 1, L3: 1

– #Filters: 90
– Pooling width: 3
– #nodes@hiddenUnits: 500

● Optimal values for MFCC:
– Context len: 30 frames (290ms)
– kW: L1: 39, L2: 5, L3: 7

– dW: L1: 10, L2: 1, L3: 1

– #Filters: 80
– Pooling width: 0
– #nodes@hiddenUnits: 500

E. Loweimi

kW: kernel width
dW: stride

 8/57

Hyperparameters; MFCC vs Raw

● Optimal frame length is Similar (270 vs 290 ms)
● kW-L1: 10 vs 39 (samples) → longer filters for Raw

● dW-L1: both 10 (samples)

● #filters: 80 vs 90
● Pooling width: 0 vs 3 → redundancy in Raw → subsampling
● #Nodes in MLP→both 500→same requirement at high level

E. Loweimi 8/57

Phoneme Recognition on TIMIT

● MFCC is better that Raw
● CNN is better than MLP

– Feature: MLP→CNN; Gain
– MFCC (HMM): 66.65→70.52; +3.87
– Raw (HMM): 38.91→67.88; +28.97

● CRF is better than HMM
– Learns bigram LM over phonemes (?)
– Gain→Raw: 1.59%; MFCC: 1.28% abs

E. Loweimi 9/57

Phoneme Recognition on TIMIT

● Systems:
– Baseline: MFCC→MLP[2L]→HMM

– CNN+CRF: Raw → CNN+MLP[2L] → CRF

– Are they comparable?!

● Baseline is better than Raw
● High resolution class definition (for

TIMIT) is better (?!)
– Data size, CRF effect, ...

– 183 = 3* x 61 (TIMIT orignal transcription)
– 117 = 3 x 39 (61**→collapsed to 39 [or 48])

* #states per phoneme
** Too narrow description for practical uses &
easy to perplex

E. Loweimi 10/57

Frequency Response of Learned Filters

● Similarity to Auditory filtering is not investigated
– Filters are multimodal

● Centre frequency & BW (?)
● Difficult to compare with auditory filters

● They are “… Matching filters ...”
– “Matched filter” is the standard term!

E. Loweimi 11/57

E. Loweimi

Contributions
● Scalability

– LVCSR (WSJ SI-284)

● Feature Invariance across Domains
– WSJ ↔ TIMIT

● Filter Interpretation

E. Loweimi 12/57

Feature Invariance across Domains

● Stage 1
– Full training on Domain 1

● Stage 2
– Fix the front-end (CNN)

– Train the Fully-connected (FC)

E. Loweimi 13/57

Set up – Hyperparameters
● Parameters → win, kWn, dWn, dn, kWmp, #hidden units

● Tuning → Early stopping on dev + Grid search

● Systems
– CNN-1L: 3xCNN + 1 HiddenLay MLP
– CNN-3L: 3xCNN + 3 HiddenLay MLP

● Optimal Setup for WSJ SI-284
– Win: 310ms, kWn: first layer→50 samples (3ms); other layers: 5 frames

(0.6ms), dWn: 10 samples, dn: 80-60-60 filters, kWmp: 2 pooling width,
500 / 1000 hidden units

E. Loweimi 14/57

Experimental Results – LVCSR
● Raw is better than MFCC
● Deeper model is better, esp. for Raw

– RWERR* in 1L to 3L
● MFCC-ANN → 8.6%
● Raw-CNN → 16.4%

● ANN vs CNN with identical #Params
– Does it make the comparison fair?

NN-xL → x: #hidden layers, 1 or 3

*Relative WER reduction E. Loweimi 15/57

Transfer Learning
● Feature Invariance (Train domain → Test domain)

– Let WT = “WSJ→TIMIT” & TW: “TIMIT → WSJ”

● Performance loss (mismatch - match)
– WT - TT → 0.1%

– TW - WW → 3.4%

Features trained on WSJ work well for TIMIT, not vice versa!

E. Loweimi 16/57

● Comparison of learned filters
– Similarity measure: KLD

● Some domain invariance ...
– Is this comparison meaningful?

● Recall WT and TW

● No significant activity at f > 2kHz

WSJ and TIMIT Filters Comparison

E. Loweimi

KLD-Ref

Ref

Ref

 17/57

E. Loweimi

Contributions
● Investigate performance in match and

mismatch conditions
– TIMIT+Noise & Aurora-2

● Further interpretation
– Average Frequency Response for Vowels
– Filter Analysis

E. Loweimi 18/57

Filter Analysis
● Compute Vowel Average Frequency Response

1) n = zeros(num-vowels, num-filters)

2) For i, vowel in enumerate(Vowels):
1) Propagate centre frame of vowel into the NN

2) j = argmax to find most firing filter # j is index of most firing filter

3)n[i,j] += 1 # number of times filter j is triggered when vowel i is propagated

3) Keep the five most firing filters for each vowel and normalise the
counts λi = ni / Σj nj

4) Compute weighted mean of Filters using normalised counts (λi)

E. Loweimi 19/57

Filter Analysis for vowel /iy/

Five most firing filters, with their proportion factor (λ) for /iy/

E. Loweimi 20/57

bean

Average Frequency Response
● Task → TIMIT phone recognition

● Data → TIMIT DevSet

● Vowels→/iy/, /ah/, /er/, /ow/ and /ay/

How similar the spectrum is to
vowels power spectrum?

Formant structure ...

Many vowels have the same
F1, F2 and F3!!!

E. Loweimi 21/57

Average Frequency Response
● Task → TIMIT phone recognition

● Data → TIMIT DevSet

● Vowels→/iy/, /ah/, /er/, /ow/ and /ay/

● How similar the spectrum is to
vowels power spectrum?

● Formant structure ...
– Many vowels have the same

F1, F2 and F3!!!

E. Loweimi 21/57

Mismatch Scenario – TIMIT
● TIMIT Multi-style training (NOT NTIMIT!)

– Noise added via FaNT
– Noise signals → NoiseX-92 database
– Train Noise: Car, Operation, Lynx, Minigun; SNR: 5-20 dB + clean

– Test Noise: F-16 and Factory; SNR: 0 to 30 dB

● Baseline → MFCC (w/o normalisation!!!) + ANN-1L [500 nodes]

● Raw: CNN-L3 + ANN-L2 [500 nodes]

E. Loweimi 22/57

#Hidden_ layers

Mismatch Scenario – TIMIT

● Mismatch (Clean)
– Raw outperforms MFCC ≥ 10 dB

● Match (Multi)
– Raw outperforms MFCC at all

SNRs

Phone Recognition Rate (PRR)
ANN ↔ MFCC
CNN ↔ Raw

E. Loweimi 23/57

Mismatch Scenario – Aurora-2

● Clean Training (Mismatch)
– TestSet A: Raw outperform

MFCC → SNR ≥ 10 dB

– TestSet B: Raw outperforms
MFCC, at all SNRs

● Multi-condition Training
– Raw (CNN) outperforms

MFCC (ANN), at all SNRs

ANN ↔ MFCC , CNN ↔ Raw

E. Loweimi 23/57

Conclusion for TIMIT and Aurora-2
● In clean training (mismatch) condition

– Raw outperforms MFCC ≥ 10 dB

● In multi-condition (match) scenario
– Raw outperforms MFCC at ALL SNRs

● Comparison is not fair!!!
– Shallow ANN vs Deep CNN

– MFCCs are not normalised

E. Loweimi 24/57

E. Loweimi

Contributions
● Raw waveform modelling on LVCSR tasks
● Comparison with many conventional featurs

– MFCC, FBANK, PLP, GT and |FFT|

● MLP for acoustic modelling
● Investigation of data amount and activation function roles
● Interpretation of learned filters

E. Loweimi 25/57

Experimental Setup
● Training data from Quaero project

– Training set: 50 and 250h, DevSet and Testset 3.5h, each

● Language model: 4-gram
● DNN: MLP with 6 hidden layers (2k units) → 30-35M parameters
● DNN initialisation: Discriminative pre-training (DPT)
● DNN input feature: 17 stacked frames ~ 185 ms
● Toolkit: RASR
● Baseline: GMM-HMM → 30M trainable-parameters
● MFCC per frame: LDA on 9 consecutive frames → 45 features per frame

– MVN norm

E. Loweimi 26/57

Experimental Results – 50h
● DNN is better than GMM

– ~ 20 %, relative

● Raw → significantly worse
– ~ 16-20% relative to GMM
– ~ 45-50% relative to DNN

50h training data

E. Loweimi 27/57

Effect of Each Stage of MFCC (Relative)
● Best feature: MFCC; Worst: Raw
● MFCC utterance norm→RWERR*<2.2%

– VTLN →< 1%

● MFCC-dim.: 16→20 => RWERR < 1.5%
● CRBE slightly worse than MFCC

– 20 filters is better than 40!

● |FFT| → worse than MFCC and CRBE
– |.|0.1 slightly helps despite huge statistical effect!

● Utter-norm is better than global norm

* RWERR: Relative WER Reduction
E. Loweimi 28/57

MFCC vs PLP and GT
● Performance on Dev

– MFCC, PLP = GT*

● Performance on Eval
– PLP, MFCC, GT

● Feature combination is helpful
– Info redundancy or complementary

● MFCC/PLP are FT-based, GT is not

DNN + VTLN + Utter-level norm

E. Loweimi 29/57

.

.

. . .

t
1

t
2

t
3

t
T

t
1

t
2

t
3

t
T

f
max

f
1

f
2

f
max

f
1

f
2

.

.

GT*: GammaTone Feature,
Schulter et al, 2007

Interpretation of First layer’s Weights

● First layer → filterbank →
time-frequency analysis

● Filters aren’t symmetric &
centred

● Some filters are just shifted
replica

.

.

.

.

.

.

Bandpass Impulse responses

Rest of
DNN

E. Loweimi 30/57

Interpretation of First layer’s Weights

● First layer → filterbank → time-
frequency analysis

● Filters aren’t symmetric & centred

● Some filters are just shifted replica

● Interpretation
– Similar magnitude, different phase

– Emulate shifting in CNNs!
● CNNs do not shifted replica!

===>>> fewer parameters

.

.

.

.

.

.

Bandpass Impulse responses

Rest of
DNN

E. Loweimi 30/57

Interpretation of First layer’s Weights

● Sort the filters based on fc

– fc ≈ argmax of freq response (Wi)

● g→Gaussian kernel→low-pass filter

● Compute the bandwidth (fb)

– Using Noise Equivalent Bandwidth

E. Loweimi 31/57

Interpretation of First layer’s Weights

* Filters are unimodal, bandpass and narrow

* Filters’ Bandwidth ...
 – Varies between 100-1000 Hz
 – Trend-wise increases by centre freq

E. Loweimi 32/57

Using ReLU instead of Sigmoid
● Relative gain on Eval Set

– MFCC → 5.5%
– Combination → 10%
– |FFT| → 7.8%
– Raw → 18.6%

● Highest relative gain for Raw, Why?
– ReLU’s sparsity is good for high dim(?)
– |FFT| is high-dim, but MFCC level gain!

Relative Gain on Eval
 – MFCC → 5.5%;
 – Combination → 10%
 – |FFT| → 7.8%

 – Raw → 18.6%

E. Loweimi 33/57

Relative gain of ReLU for 50 & 250h
● ReLU gain* for 50 & 250

– MFCC →5.5 vs -3.4%
– Combination→10.3 vs 4.5%
– |FFT| → 7.8 vs +0%

– Raw → 18.6 vs 8.2%

● ReLU is less useful when more
data is available

E. Loweimi

50h

250h

* relative to sigmoid 34/57

Relative gain of 250h for Sigm & ReLU

● 50→250 relative gain; Sigm vs ReLU
– MFCC → 19.0, 11.3

– Combination → 18.2, 12.9

– |FFT| → 19.4, 13.0

– Raw → 26.9, 17.5

● Sigmoid further benefits from data

● Data amount is more important than
activation function

50h

250h

E. Loweimi 35/57

Performance Gap: Raw vs MFCC
● Performance gap = WERRAW - WERMFCC

– 50h, Sigmoid → 9.8%
– 50h, ReLU → 4.7%
– 250h, Sigmoid → 5.2%
– 250h, ReLU → 2.4%

● Applying ReLU halves the gap (relative to sigmoid)
● Using 5x more data [50→250h] halves the gap

E. Loweimi 36/57

Effect of First layer Initialisation
● Initialisation with GT filters

– 32 filters (i) + shifted copies
– No update → fixed first layer

● Init. with GT has almost no effect
– Note: Filters are not learned as

parametric (fc, BW) models!

● Fixing first layer worsen the results
– Eval → 2.4% abs, 8.4% rel

E. Loweimi 37/57

E. Loweimi

Contributions
● First layer→bank of bandpass filters→time-freq analysis
● Performance gap between raw and MFCC reduced by

using ReLU and more training data

● This paper
– Replacing MLP with CNN
– Further interpretation of learned filters

E. Loweimi 38/57

Experimental Setup
● Training data: Quaero, English, train11
● Dev and Eval sets: 3.5h
● LM: 4-gram
● Random initialisation + layer-wise discriminative pre-training
● MFCC → 45 dim, LDA on 9 consecutive frames
● Toolkit: RASR
● HMM-GMM parameters: 30M
● DNN input, 2000 ReLU unites per layer

– Baseline: MFCC of 17 stacked frames
– Raw: 10ms x 17 => 170 ms, frame shift = 10

● Conv layer: kernel len: 256 samples (16 ms), stride: 31 samples (2 ms), #channels = 128

E. Loweimi 39/57

Experimental Results
● Baseline

– MFCC: GMM → DNN [30%]

– Raw: 9→12 layers
● RWERR: Dev 1.9%, Eval 3%

● 1Conv layer + MLP
– 1Conv+MLP-5L ≈ MLP-12L

● [WER] A conv layer ≡ 7 MLP layers

– 1Conv+MLP-12L → rel. gain 5.9%

1Conv+ MLP-xL

E. Loweimi 40/57

● Conv. kernel length (k) is not a
critical choice
– 8-64ms filters→similar WER

● No need to multi-resolution!

● Adding second conv layer slightly
improves the results; ~ 2% relative

1CNN + MLP-10L

E. Loweimi 41/57

Conv Layer Hyperparameters Effect

Learned Filters of Conv-L1

● A bank of bandpass(?) filters
– Time-frequency analysis

● Some similarity to auditory filters

– More filters in low frequencies
● fc is a sub-linear function of

(sorted) filter index
● 78% of filters are below 4 kHz

– BW increases with fc, trend-wise

Estimated centre
freq and bw in
frequency domain

Time

E. Loweimi 42/57

Learned Filters of Conv-L2
● Recognisable Patterns

– Non-stationary (?) in both
directions → 0,8,10,14

– Time-invariant → 7
– Matched filter
– MRASTA and Gaussian-

like → 1,9,13

E. Loweimi 43/57

E. Loweimi

Contributions
● Generalising the downsampling and env-extractor block

(Max-Pooling) and make it trainable
– EnvExtractor: Rectifier + Low-pass filter

● Learning multi-resolution spectral representation
– Time-freq analysis with multiple spectro-temporal resolutions

E. Loweimi 44/57

Max-Pooling
● Performs subsampling and Lowpass filter for env.

extraction

● Subsampling could lead to aliasing
– Baseband vs bandpass sampling

● Sampling under Nyquist rate is possible for bandpass signals

– E.g. for 1ms stride→sampling rate [Approximately] is 1 kHz
● Undersampling for BW > 500 Hz
● Oversampling for BW < 500 Hz

Aliasing

E. Loweimi 45/57

1) hk,t: Impulse response of kth FIR filter with NTF taps (1D-
ConvLayer1) → Time-frequency (TF) analysis

– Shared over time, similar to TDNN

2) Stride by 10 samples

– Subsampling by factor 10 (t=10t′)

3) f1: half (ReLU) or full (Abs)

4) li,t́ : Impulse response of ith FIR filters with NENV taps (1D-
ConvLayer2)

– Trainable env-extractor + Multi-Resolution Proc.

– Shared over time and TF filters

5) Stride by 16 samples

– Subsampling by factor 16 (t=160 t″)

6) f2: Rectification + non-linearity (log/root)

– Its output, xk,i,t″ interpretable as CRBE

7) Windowing → Feature-dim: K x L x (2x8+1)

Multi-resolution Signal Process. via NNs

(Mirrored and) ShiftedContext length E. Loweimi /57

Pipeline

h
k,t ↓10 f

1
l
i,t′ ↓16 windowing Add Context

2x8+1 = 17

Linear
Projection

to 512

11-L
DNNf

2

t t′ t″

CRBE

E. Loweimi

Low rank matrix
factorisation

downsampling

 46/57

Experimental Setup
● Training: CE, SGD+Momentum, l2 reg., discriminative pre-training

● TF filters: 150 filters with NTF=512 samples (32 ms)

● li,tˊ →16 < NENV < 40 samples, 5 < #filters [denoted by max(i)!!!] < 20

● Training data: 250h, Dev and Eval: 3h each
● Toolkit: RASR
● Architecture: CNN front-end + 12-layer MLP with 2000 ReLU units
● Low-rank linear factorisation at the first layer to 512

– Feature-dim = K x L x M, e.g. 150 x 20 x 17 = 51000
– K: #filters@L1, L: #filters@L2, M: Context_Len

E. Loweimi 47/57

Experimental Setup – Single EnvExt

● GT is better than Raw

● Second Conv-L is useful

● Trainable env-extractor is as
effective as Max-pool

● NENV is not a critical param.
– Overlapping max-pooling for

NENV > 16 (Stride@L2 is 16)
● No significant effect

– #TF=50, f
1
=| . |, f

2
=| . |0.4

– Single envelope detector
– time-signal DNN→using
only one conv layer

E. Loweimi 48/57

Experimental Setup – Multiple EnvExt
● #TF: 50→150, WER: 19.8 → 19.3

● Abs is slightly better than ReLU

● NENV is not a critical param., but
should not be too large (e.g. 160)

● Root comp. helpful when NENV ≤ 40

● Optimal setup

– max(i)=5, NENV=40, f1=|.|, f2=|.|0.4

● For GT features is 0.1
– #TF: 150
– max(i): #filters of Conv-L2

E. Loweimi 49/57

Transfer Learning + MVN
● Front-end learned for MLP and fixed

● MVN on segment level
– Fix learned front-end →Dump &

normalise features → Learn back-
end again (MLP & LSTM)

● NN1: features + context (17) → low-
rank factorization layer

● NN2: ONLY xi,k,t″ w/o context [LSTM]

Baseline, first raw, best system from previous
table max(i)=5, N

ENV
=40, f

1
=|.|, f

2
=|.|0.4

NN2 → 750 = 150 (k) x 5 (L)
E. Loweimi 50/57

Transfer Learning + MVN
● GT is better than raw

● LSTM for NN1

– MN worsen, MVN improves
– Front-end is learned based on

MLP and is fixed (Mismatch!)

● Using LSTM is useful for NN2 & GT

– Both are w/o context
● LSTM takes care of context!

E. Loweimi 51/57

Each subband is covered by band-
pass filters with different BWs

– 150 filters (h
k,t

)
– f

c
 and BW est.

– grayscale prop
with amp

Fc, BW (in freq)
and
Pulse centre and
duration (in time)
are estimated

Multi-Resolution Processing in TF Stage

 52/57

Multi-Resolution Processing in Conv-L2

● These are hypothetical, not learned, filters impulse
responses. Wavelet-like processing
– I1: deals with slowly varying components (low freq)

– l2:5: deals with faster varying components + localisation

T

F

Wavelet

 53/57

Envelope Detection Filters
● Learned Ii,ts are Lowpass (LP) and

bandpass (Modulation) filters!

– Separated based on energy@0Hz

● Filters sorted based on the highest
3 dB cut-off frequency (not argmax)

● Here, Modulation frequency range
is 0-200 Hz

– 1-50Hz covers the modulation
content of speech signal [33]

max(i) = 20

E. Loweimi 54/57

CRBEs
F

re
q

u
e

n
cy

 (
kH

z)

Gammatone y
k,t′

Output of h
k,t

Output of I
i,t

LP part
Output of I

i,t

Mod, 40Hz

Static over time axis Dynamic over time axis

E. Loweimi 55/57

Experimental Results – CHiME4

● MFCC outperforms with a significant margin on this task

– 40% Relative lower WER

E. Loweimi 56/57

T. Menne, Z. Tüske, R. Schlüter, and H. Ney. Learning Acoustic Features
from the Raw Waveform for Automatic Speech Recognition, 2018

Part I – Conclusion
● Conventional features are still better
● Architecture is important (CNN rather than MLP)
● Data amount and activation function can narrow the gap
● Interpretability

– First layer → time-frequency analysis
– Second layer → modulation spectrum processing
– Filters resemble auditory filters

● More filters in low frequency, wider filters in high frequencies

 57/57E. Loweimi

End of Part I
● Thanks for Your Attention!
● Q/A

● Part II (Next week): Google + Multi-Resolution
● Part III: Parametric CNNs

E. Loweimi 57/57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

