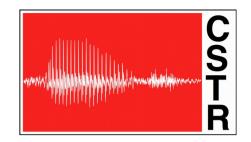


Identity Crises: Memorisation and Generalisation under Extreme Overparametrisation

Erfan Loweimi

Centre for Speech Technology Research (CSTR), University of Edinburgh Listen!; 8, Sep., 2020



Identity Crises: Memorisation and Generalisation under Extreme Overparametrisation

Erfan Loweimi

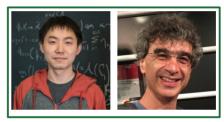
Centre for Speech Technology Research (CSTR), University of Edinburgh Listen!; 8, Sep., 2020

Identity Crisis: Memorization and Generalization under Extreme Overparameterization

Chiyuan Zhang & Samy Bengio Google Research, Brain Team Mountain View, CA 94043, USA {chiyuan,bengio}@google.com

Michael C. Mozer Google Research, Brain Team Mountain View, CA 94043, USA mcmozer@google.com **Moritz Hardt** University of California, Berkeley Berkeley, CA 94720, USA hardt@berkeley.edu

Yoram Singer Princeton University Princeton, NJ 08544, USA y.s@princeton.edu



Outlines

- Digression: Identity Crisis, inductive bias
- Motivation & Research Question
- Proposed Experimental Setup
- Experimental Results & Discussion
- Take-home messages

Identity Crisis

- Term coined by German-American psychologist Erik Erikson
- Definition
 - A period of uncertainty and confusion in which a person's sense of identity becomes insecure, typically due to a change in their expected aims or role in society.



Erik Erikson 1902-1994

E. Loweimi

Inductive Bias

Definition

- A set of (implicit or explicit) assumptions made by the model to learn the target function and to generalise beyond training data
- How a learning algorithm prioritise a solution over another, independent of data

• Examples

- Linear relationship \rightarrow *y* = *ax*+*b* in the linear regression
- Maximum Margin \rightarrow SVM
- Minimum Description Length \rightarrow Simplest consistent hypothesis is the best
- Neatest Neighbour \rightarrow clustering and classification (kNN)

Motivation (1)

- [Big] Data is NOT the only reason behind success of DNNs
 - We were and still are in an overparametrised* zone!
 - Overparametrised models outperform simple models
- *"What form of inductive biases leads to better generalisation performance from highly overparametrised models?"*
- Numerous theoretical & empirical studies ... BUT ...
 - "… these postmortem analyses do not identify the root source of the [inductive] bias."

Overparametrised: #param > #data

Why do DNNs Generalise?

- ✓ Gradient-based optimisation methods provide an implicit bias towards simple solutions ↔ Regularisation
 - However, for a sufficiently large DNN Gradient methods are guaranteed to perfectly fit training set
 - Fitting could mean MEMORISATION, e.g. fitting random labels
- Generalisation guarantees for structures solved by linear or nearest neighbour classifier over original input space; Practicality?
- ... and many more ... BUT ...
 - "The fact that ... DNNs significantly outperform ... simpler models reveals a gap in our understanding of DNNs."

This paper ...

- Goal: Study the interplay of *memor.* and *Gener.*
- Task: Reconstruction of input (Regression)
 - NOT Auto-encoders, NO Bottleneck!
- How: Train a model using <u>ONLY one</u> training example
 - Extreme overparametrisation (#params >> #data=1)
- Question: What is the output?
 - Training example (\hat{x}), similar to input (x), sth else (???)

Output Types Analysis

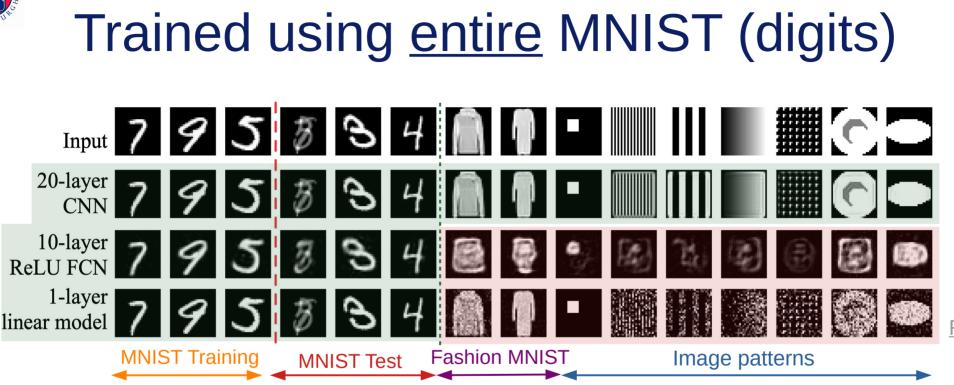
- $hat{x} \rightarrow Model learns a$ *constant*function
 - Mapping everything to a constant, regardless of x
 - Memorisation
- $\mathbf{X} \rightarrow$ Model learns an *Identity* function
 - Identity mapping, regardless of similarity to \hat{x}
 - Generalisation
- Sth else \rightarrow combination of x & \hat{x}, noise, ...

Experimental Setting

- Architectures: FCN*, CNN, ResNet (Appx. N)
- Database: digits and Fashion MNIST + CIFAR-10 (Appx. O)
- Loss function: MSE
- Optimisation:
 - Vanilla SGD (Appendix A), stepwise decay (factor: 0.2)@{30,60,80%} of training
 - Others: Adam, RMSprop, Adagrad, Adamax (Appendix I)
- Studied factors:
 - Depth, width (Appx. E), non-linearity, #channels, kernel size, Image size
 - Initialisation (Appx. I)

Advantages of the Proposed Task

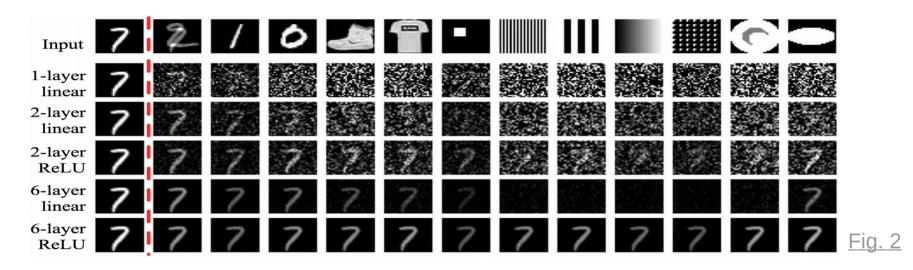
- Clear & unambiguous definition of memor. and gener.
- Analysis/visualisation of model behaviours & hidden layers
- Requires transmitting all input info to the output
- Investigation of architectures and hyperparameters is easy
- A simple form of conditional image generation



- All nets work well on digits (even for blend & novel digits)
- For non-digit patterns, ONLY CNN learns identity function

E. Loweimi

Trained FCN using one digit (7)



- FCNs do NOT learn identity function (regardless of depth and non-lin)
- Shallower NNs biased towards outputting White noise
- Deeper NNs tends to learn a constant function (memorisation)

Theorem 1 (Proof in Appx. C)

- A one-layer FCN, when trained with GD on a single training example \ hat{x}, converges to a solution that makes the following prediction (f(x)) on a test example x:
- R: random matrix
 - Independent of data
 - Dependent on init.

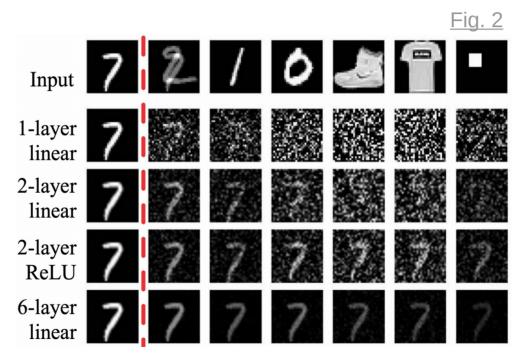
$$\begin{split} f(x) &= \Pi_{\parallel}^{\hat{x}}(x) + R\Pi_{\perp}^{\hat{x}}(x) & \text{Parallel} \\ \Pi_{\parallel}^{\hat{x}}(x) &= x.\hat{x}\frac{\hat{x}}{\hat{x}} \quad and \quad \begin{bmatrix} x = \Pi_{\parallel}^{\hat{x}}(x) + \Pi_{\perp}^{\hat{x}}(x) \\ x = \Pi_{\parallel}^{\hat{x}}(x) + \Pi_{\perp}^{\hat{x}}(x) \end{bmatrix} & \text{Parallel} \\ \text{perpendicular} \\ \text{decomposition} \\ \blacksquare \end{split}$$

Theorem 1 for Multi-layer FCN

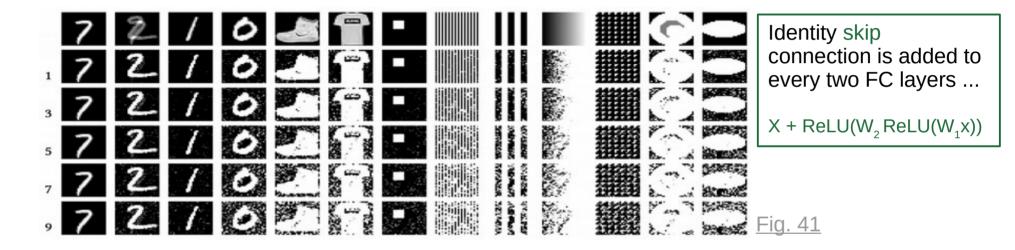
• Shallow networks tend to have similar inductive bias

 $f(x) = \Pi^{\hat{x}}_{\parallel}(x) + R\Pi^{\hat{x}}_{\perp}(x)$

- 1L, 2L & 6L-linear FCNs have similar representational powers BUT different inductive biases!
- Shallower FCNs \rightarrow noisier prediction



ResNet: FCN + Skip Connection

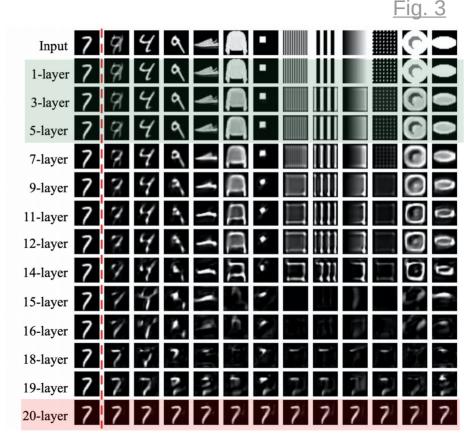


- Skip connection biases FCN towards learning identity map \rightarrow better generalisation
- **Note**: Deeper structure \rightarrow **noisier** prediction (contrary to FCN!)

Trained CNN using one digit (7)

- Shallow (up to 5-layer) learns identity
- Very Deep (20-layer) learns constant
- Intermediate depth learns some edge detector (?)
 - NO White noise like FCNs!
- **Note**: output is not a continuum from identity to constant

All layers: 128 5x5 filters, stride=1, no pooling, padding=2 (with zero) [padding keeps size fixed]



Theorem 2 (Proof in Appx. D)

- A one-layer CNN can learn the identity map from a single training example with the MSE over all output pixels bounded by
 - m: #params ($k_w k_h C^2$), C: #channels in the image
 - r: rank of subspace formed by the span of local input patches; $r \le m/C$
 - Higher rank (richer context) \rightarrow lower MSE (generalisation error (?))

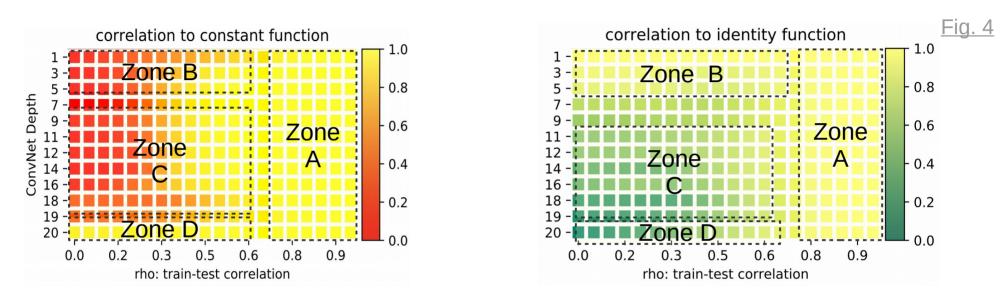
$$MSE \leq \tilde{\mathcal{O}}(\frac{m(m/C-r)}{C})$$

* Big O tilde (\tilde{O}) ignores log factor, e.g. for FFT \rightarrow O(n log(n)) or $\tilde{O}(n)$

Effect of Similarity of Input & Output

- Similarity measure: correlation
- Assume we can generate x, such that $corr(x, hat{x}) = \rho$
 - ho \in [0,1]
- Investigate
 - Corr with identity \leftrightarrow corr(x, f(x))
 - Corr with constant \leftrightarrow corr(\hat{x}, f(x))

Correlation with Constant/Identity



- Zone A: depth not important, identity \equiv constant
- Zone B: Correlation w/ identity is high, w/ constant is low $\,\leftrightarrow\,$ Generalisation
- Zone C: Correlation with constant: low; with identity: low \leftrightarrow Model hallucinates!
- Zone D: Correlation with constant: high; with identity: low \leftrightarrow Memorisation

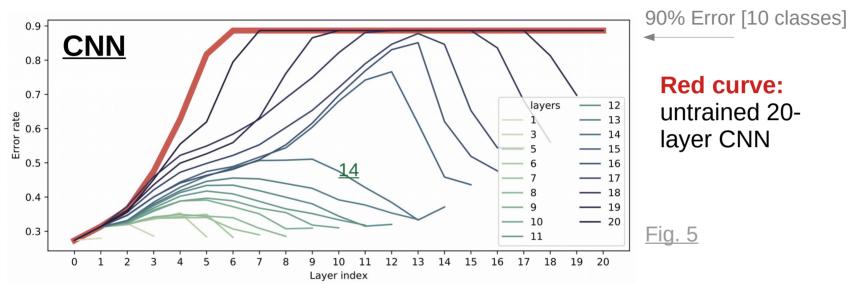
How much info is lost across layers?

- **Goal**: Measure predictive power as a function of architecture depth and layer index
- **How** to measure this?
 - Build a similarity-weighted classifier using activations of each layer
 - Computed the classification error <u>as a proxy for</u> information
 - **Note**: This classifier is linear and is NOT a perfect proxy for info!
 - e.g. when data is nonlinearly-separable

Similarity-weighted Classifier

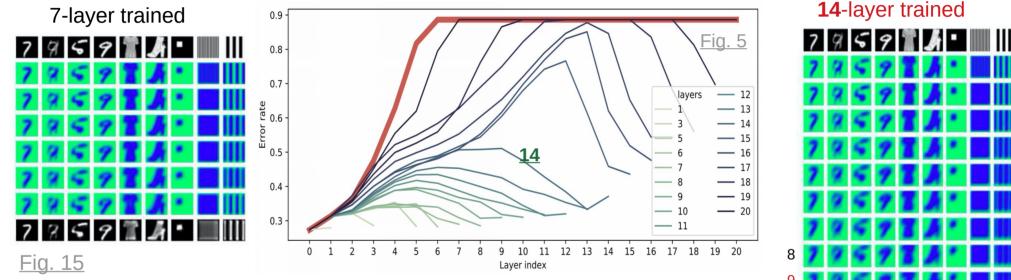
- 1. Feed the CNNs with (MNIST) training data: $\{x_j, y_j\}$
- 2. For each layer
 - 1. Dump the activations \forall training data { $x_j | 1 \le j \le N$ } 2. Build the *quasi-logit** (y_i) for input (x_i) as follows ...
- $3. c_{i} = \operatorname{argmax} \mathbf{y}_{i}$ $\mathbf{y}_{i} = \sum_{j=1}^{N} w_{j} \mathbf{y}_{j}, \text{ where } w_{j} = \frac{\mathbf{x}_{j}^{T} \mathbf{x}_{i}}{|\mathbf{x}_{j}| |\mathbf{x}_{i}|}$ * My term ;-) $N: \text{ #training_data}$ E. Loweimi 20/29

Error vs Depth & Layer Index

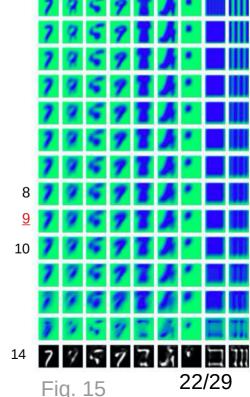


- Error vs L-index: first up (info lost), then down (info recovered)
- Deeper structure \rightarrow further info loss at intermediate layers \rightarrow less recovery chance
- Info loss across layers does NOT necessarily hinder reconstruction (redundancy)

Visualisation of intermediate Layers

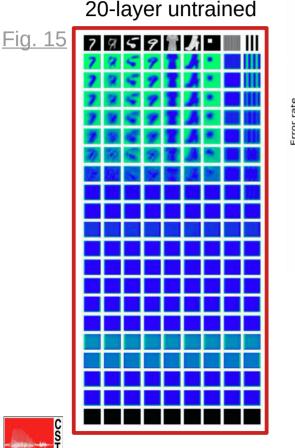


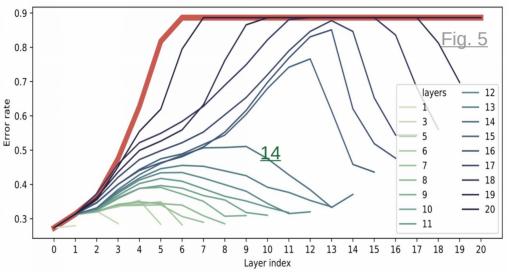
- Shallower CNNs → Intermediate layers are more active
- Reliability of error rate as an info proxy? Error-L9 is max, but ... ٠



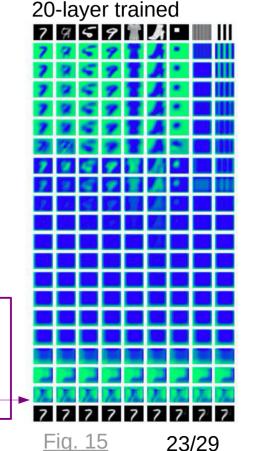
E. Loweimi

Visualisation of intermediate Layers





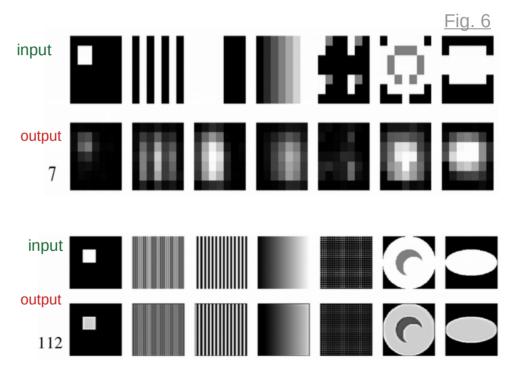
- Intermediate layers are off (memorisation?)
- Only last layers are involved in generating constant output



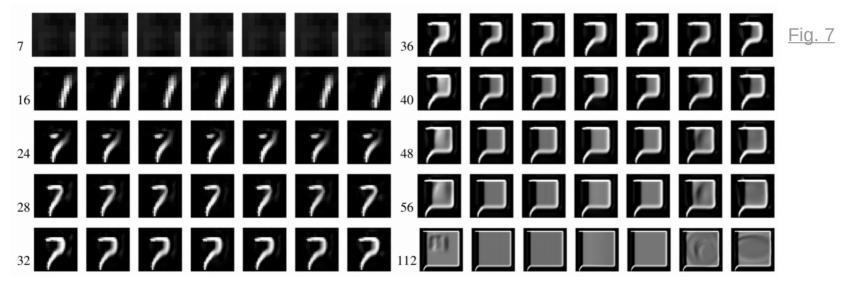
E. Loweimi

Robustness to Image Size Change (1)

- 5-layer CNN trained with 28x28 images (learned identity mapping)
- Test with 7x7 and 112x112 images
- The learned identity mapping ...
 - Disturbed for smaller-thantrained input
 - Held for larger-than-trained input

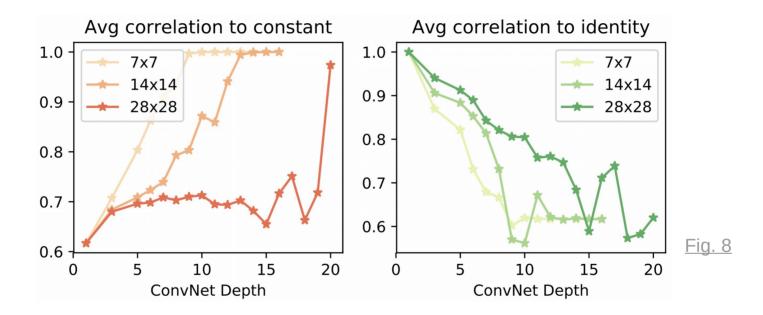


Robustness to Image Size Change (2)



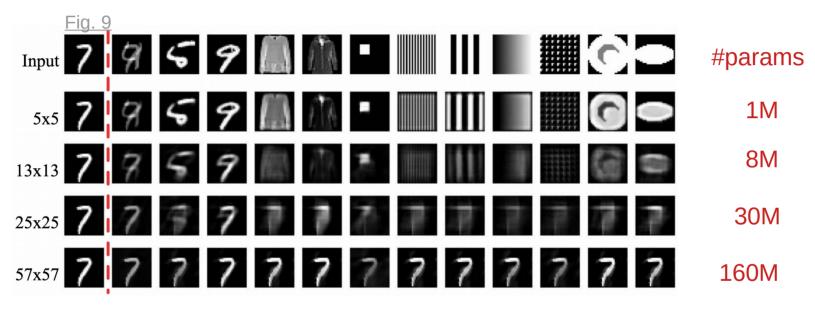
- 20-layer CNN, trained on 28x28, learned constant function
- Smaller images \rightarrow constant, but not exactly 7
- Larger images \rightarrow constant, but distorted 7 (especially@corners, 0-padding?)

Training CNN with Different Image Size



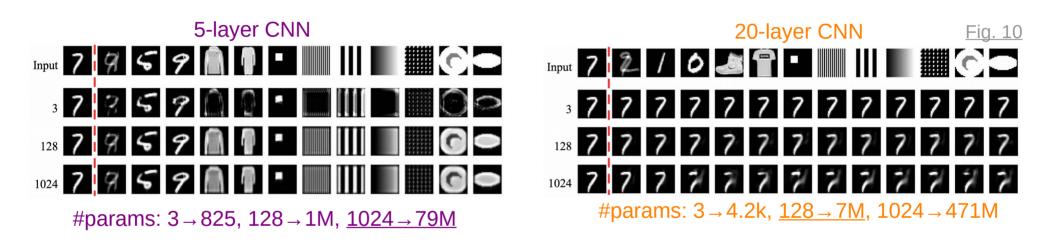
- Training with smaller images \rightarrow less spatial regularity/constraint
- Bias towards ... const function increases ... identity decreases

Effect of Filter Size (5-layer CNN)



- Larger filter size ...
 - Blurrier prediction + Getting closer to a constant function

Effect of Number of Filters



- Too deep net biased towards const function, regardless of #filters
- With proper depth, #filters does not affects bias towards identity
- **Note:** Model with 79M params generalises BUT one with 7M memorises

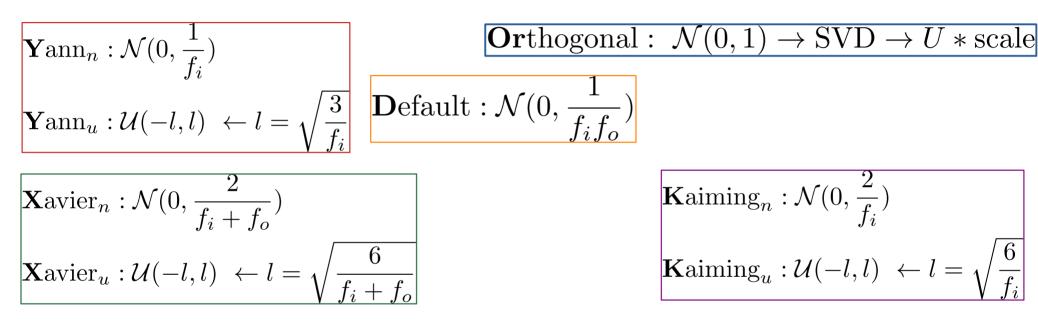
Takeaway Messages

- Why overparameterised DNNs magically avoid overfitting and generalise well?
- Task: input reconstruction (regression) using ONLY one training example
 - Learning ... const map ↔ MEMORISATION; Identity ↔ GENERALISATION
- Shallow CNNs learn identity mapping; deep CNN learn const function
- FCNs, cannot learn identity function \rightarrow more biased towards memorisation
- Skip connections help FCNs to learn identity mapping \rightarrow improve gener.
- Increasing width/#channels cannot lead to overfit, contrary to increasing depth
- #params does NOT strongly correlates with generalisation performance

That's It!

- Thanks for your attention!
- Q/A?
- Appendices
 - A1. Initialisation Effect
 - A2. Optimisation Effect
 - A3. Training with two examples
 - A4. Training with three examples
 - A5. CIFAR-10

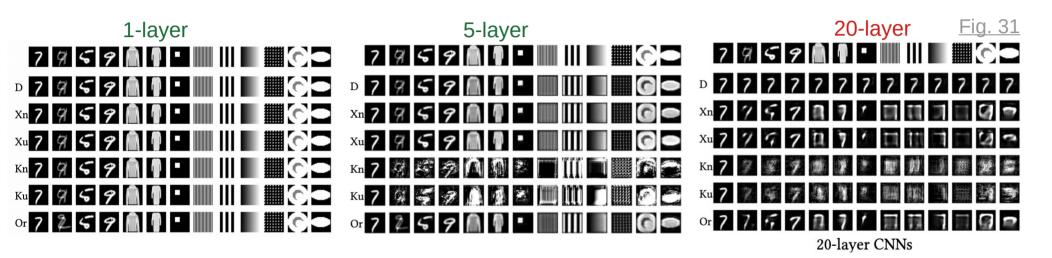
Initialisation Methods



- Yann Lecun et al., 1998
- Xavier Glorot et al., 2010

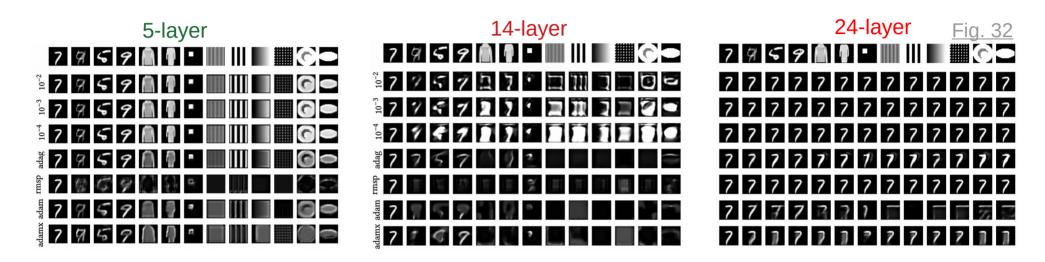
- Orthogonal [Andrew Saxe et al., 2014]
- Kaiming He et al., 2010

Initialisation Effect – CNN



- Initialisation matters ... especially for deeper networks (?)
 - Xn, Xu and <u>Or</u>thogonal init. are equally good
 - Kaiming init. (Kn and Ku) creates some artifacts

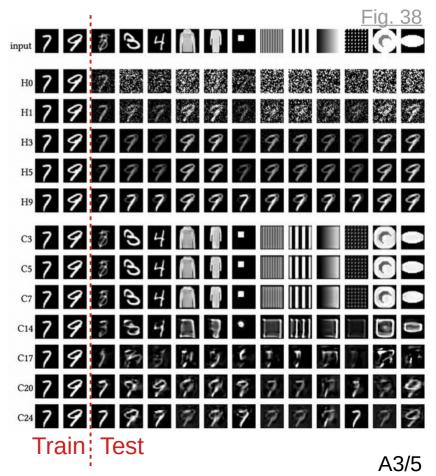
Optimisation Effect – CNN



- SGD is better than fancier methods in terms of Generalisation
- ... **BUT** ... they have a better dynamics (converge faster)

Training with <u>Two</u> Examples; Similar ...

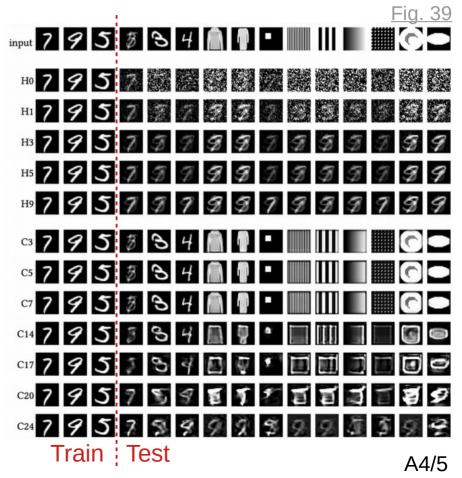
- FCNs learn **const** + noise
- CNNs learn ...
 - Shallow ↔ identity
 - Deep ↔ const
 - Int. ↔ edge detector (?)
- What is the const, here?
 - Interpolation, simpler pattern or ...



E. Loweimi

Training with **Three** Examples; Similar ...

- FCNs learn **const** + noise
- CNNs learn ...
 - Shallow ↔ identity
 - Deep ↔ const
 - Int. ↔ edge detector (?)
- What is the const, here?
 - Interpolation, simpler pattern or ...



E. Loweimi

i in Hi:

#hidden Lay

FCNs

H7

CIFAR-10 – FCNs

- Similar to MNIST \rightarrow output = training example + White noise
 - No Chance for learning identity mapping (generalisation)
 - Shallow network: White noise is dominant (hallucination)
 - Deeper network: training example is dominant (memorisation)
 E. Loweimi

Fig. 42

CIFAR-10 - CNNs

- Similar to MNIST ...
 - Shallow \rightarrow learns identity
 - Generalisation
 - Deep \rightarrow learns constant
 - Memorisation
 - Intermediate \rightarrow edge detector
 - Hallucination

