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Identity Crisis
● Term coined by German-American psychologist Erik Erikson

  

● Definition

– A period of uncertainty and confusion in which a person's 
sense of identity becomes insecure, typically due to a 
change in their expected aims or role in society.

Erik Erikson
1902-1994  2/29E. Loweimi



  

● Definition
– A set of (implicit or explicit) assumptions made by the model to learn the target 

function and to generalise beyond training data
– How a learning algorithm prioritise a solution over another, independent of data

   

● Examples
– Linear relationship → y = ax+b in the linear regression
– Maximum Margin → SVM
– Minimum Description Length → Simplest consistent hypothesis is the best 
– Neatest Neighbour → clustering and classification (kNN)

Inductive Bias

Occam’s 
Razor
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Motivation (1)
● [Big] Data is NOT the only reason behind success of DNNs

– We were and still are in an overparametrised* zone!

– Overparametrised models outperform simple models

● “What form of inductive biases leads to better generalisation 
performance from highly overparametrised models?”

● Numerous theoretical & empirical studies … BUT …

➢ “… these postmortem analyses do not identify the root source of 
the [inductive] bias.”  

Overparametrised:  #param > #data
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Why do DNNs Generalise?
✔ Gradient-based optimisation methods provide an implicit bias towards 

simple solutions ↔ Regularisation
– However, for a sufficiently large DNN Gradient methods are guaranteed 

to perfectly fit training set
● Fitting could mean MEMORISATION, e.g. fitting random labels

✔ Generalisation guarantees for structures solved by linear or nearest 
neighbour classifier over original input space; Practicality?

• … and many more … BUT …
➢ “The fact that ... DNNs significantly outperform ... simpler models reveals a gap in our 

understanding of DNNs.”
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This paper ...
● Goal: Study the interplay of memor. and Gener.
● Task: Reconstruction of input (Regression)

– NOT Auto-encoders, NO Bottleneck!

● How: Train a model using ONLY one training example
– Extreme overparametrisation (#params >> #data=1)

● Question: What is the output?
– Training example (\hat{x}), similar to input (x), sth else (???)
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Output Types Analysis
● \hat{x} → Model learns a constant function

– Mapping everything to a constant, regardless of x
– Memorisation

    

● x → Model learns an Identity function
– Identity mapping, regardless of similarity to \hat{x}
– Generalisation 
–     

● Sth else → combination of x & \hat{x}, noise, ...
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Experimental Setting
● Architectures: FCN*, CNN, ResNet (Appx. N)
● Database: digits and Fashion MNIST  +  CIFAR-10 (Appx. O)
● Loss function: MSE
● Optimisation: 

– Vanilla SGD (Appendix A), stepwise decay (factor: 0.2)@{30,60,80%} of training
– Others: Adam, RMSprop, Adagrad, Adamax (Appendix I) 

● Studied factors: 
– Depth, width (Appx. E), non-linearity, #channels, kernel size, Image size
– Initialisation (Appx. I)
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Advantages of the Proposed Task

● Clear & unambiguous definition of memor. and gener.
 

● Analysis/visualisation of model behaviours & hidden layers

● Requires transmitting all input info to the output

● Investigation of architectures and hyperparameters is easy

● A simple form of conditional image generation
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Trained using entire MNIST (digits)

MNIST Training MNIST Test Fashion MNIST Image patterns

● All nets work well on digits (even for blend & novel digits)

● For non-digit patterns, ONLY CNN learns identity function

Fig. 1
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Trained FCN using one digit (7)

● FCNs do NOT learn identity function (regardless of depth and non-lin)

● Shallower NNs biased towards outputting  White noise 

● Deeper NNs tends to learn a constant function (memorisation)

Fig. 2
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Theorem 1 (Proof in Appx. C)
● A one-layer FCN, when trained with GD on a single training example \

hat{x}, converges to a solution that makes the following prediction 
(f(x)) on a test example x:

Parallel 
perpendicular 
decomposition
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R: random matrix
   

   – Independent of data
   – Dependent on init. 



  

● Shallow networks tend to have 
similar inductive bias

  

● 1L, 2L & 6L-linear FCNs have similar 
representational powers BUT 
different inductive biases!

● Shallower FCNs → noisier prediction 

Theorem 1 for Multi-layer FCN

Fig. 2
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ResNet: FCN + Skip Connection

● Skip connection biases FCN towards learning identity map        
   → better generalisation

● Note: Deeper structure → noisier prediction (contrary to FCN!)

Identity skip 
connection is added to 
every two FC layers ...

X + ReLU(W
2 
ReLU(W

1
x))

Fig. 41
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● Shallow (up to 5-layer) learns identity

● Very Deep (20-layer) learns constant

● Intermediate depth learns some edge 
detector (?)
– NO White noise like FCNs!

 

● Note: output is not a continuum from 
identity to constant

Trained CNN using one digit (7)

All layers: 128 5x5 filters, stride=1, no pooling, 
padding=2 (with zero) [padding keeps size fixed] 

Fig. 3
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Theorem 2 (Proof in Appx. D)
● A one-layer CNN can learn the identity map from a single training 

example with the MSE over all output pixels bounded by

– m: #params (kw kh C2), C: #channels in the image

– r: rank of subspace formed by the span of local input patches; r ≤ m/C
● Higher rank (richer context) → lower MSE (generalisation error (?)) 

* Big O tilde (Õ) ignores log factor, e.g. for FFT → O(n log(n)) or Õ(n)
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Effect of Similarity of Input & Output
● Similarity measure: correlation

● Assume we can generate x, such that corr(x, \hat{x}) = ρ
– ρ \in [0,1]

 

● Investigate
– Corr with identity↔corr(x, f(x))

– Corr with constant↔corr(\hat{x}, f(x))
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Correlation with Constant/Identity

● Zone A: depth not important, identity ≡ constant 
● Zone B: Correlation w/ identity is high, w/ constant is low ↔ Generalisation
● Zone C: Correlation with constant: low; with identity: low ↔ Model hallucinates!
● Zone D: Correlation with constant: high; with identity: low ↔ Memorisation

Zone
A

Zone
A

Zone B Zone  B

Zone
C

Zone
C

Zone D Zone D

Fig. 4
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How much info is lost across layers?
● Goal: Measure predictive power as a function of 

architecture depth and layer index
● How to measure this?

– Build a similarity-weighted classifier using activations of each layer
– Computed the classification error as a proxy for information

– Note: This classifier is linear and is NOT a perfect proxy for info!
● e.g. when data is nonlinearly-separable

 19/29E. Loweimi



  

Similarity-weighted Classifier
1. Feed the CNNs with (MNIST) training data: {xj, yj}

2. For each layer 

1.Dump the activations    training data {xj | 1 ≤ j ≤ N}

2.Build the quasi-logit* (yi) for input (xi) as follows ...

3.ci = argmax yi

one-hot
 20/29E. Loweimi

N: #training_data* My term ;-)

A



  

Error vs Depth & Layer Index
CNN

● Error vs L-index: first up (info lost), then down (info recovered)

● Deeper structure → further info loss at intermediate layers → less recovery chance

● Info loss across layers does NOT necessarily hinder reconstruction (redundancy)  

Red curve: 
untrained 20-
layer CNN

90% Error [10 classes]

14

Fig. 5
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Visualisation of intermediate Layers
14-layer trained7-layer trained

● Shallower CNNs → Intermediate layers are more active

● Reliability of error rate as an info proxy? Error-L9 is max, but ...

14

8

9

10

14

Fig. 15

Fig. 15

Fig. 5
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Visualisation of intermediate Layers
20-layer trained20-layer untrained

● Intermediate layers are off (memorisation?)

● Only last layers are involved in generating 
constant output

14

Fig. 15

Fig. 15

Fig. 5
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Robustness to Image Size Change (1)

● 5-layer CNN trained with 28x28 
images (learned identity mapping)

● Test with 7x7 and 112x112 images
  

● The learned identity mapping ...
– Disturbed for smaller-than-

trained input
– Held for larger-than-trained input

input

output

input

output

Fig. 6
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Robustness to Image Size Change (2)

● 20-layer CNN, trained on 28x28, learned constant function

● Smaller images → constant, but not exactly 7

● Larger images → constant, but distorted 7 (especially@corners, 0-padding?)

Fig. 7
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Training CNN with Different Image Size

● Training with smaller images → less spatial regularity/constraint

● Bias towards … const function increases ... identity decreases 

Fig. 8
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Effect of Filter Size (5-layer CNN)

● Larger filter size …
– Blurrier prediction + Getting closer to a constant function

Fig. 9

#params

1M

8M

30M

160M

 27/29E. Loweimi



  

Effect of Number of Filters

● Too deep net biased towards const function, regardless of #filters

● With proper depth, #filters does not affects bias towards identity

● Note: Model with 79M params generalises BUT one with 7M memorises  

5-layer CNN 20-layer CNN

#params: 3→825, 128→1M, 1024→79M #params: 3→4.2k, 128→7M, 1024→471M

Fig. 10
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Takeaway Messages
● Why overparameterised DNNs magically avoid overfitting and generalise well?

● Task: input reconstruction (regression) using ONLY one training example

– Learning … const map ↔ MEMORISATION; Identity ↔ GENERALISATION

● Shallow CNNs learn identity mapping; deep CNN learn const function

● FCNs, cannot learn identity function → more biased towards memorisation

● Skip connections help FCNs to learn identity mapping → improve gener.
   

● Increasing width/#channels cannot lead to overfit, contrary to increasing depth

● #params does NOT strongly correlates with generalisation performance
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That’s It!
● Thanks for your attention!
● Q/A?

 

● Appendices
A1. Initialisation Effect

A2. Optimisation Effect

A3. Training with two examples

A4. Training with three examples 

A5. CIFAR-10
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Initialisation Methods

● Yann Lecun et al., 1998

● Xavier Glorot et al., 2010

● Orthogonal [Andrew Saxe et al., 2014]

● Kaiming He et al., 2010
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Initialisation Effect – CNN

● Initialisation matters … especially for deeper networks (?) 
– Xn, Xu and Orthogonal init. are equally good  
– Kaiming init. (Kn and Ku) creates some artifacts

5-layer 20-layer1-layer

 A1/5E. Loweimi
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Optimisation Effect – CNN

● SGD is better than fancier methods in terms of Generalisation

● … BUT … they have a better dynamics (converge faster)

5-layer 14-layer 24-layer 
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Training with Two Examples; Similar ...

● FCNs learn const + noise

● CNNs learn ...
– Shallow ↔ identity
– Deep ↔ const
– Int. ↔ edge detector (?)

● What is the const, here?
– Interpolation, simpler pattern or ...

Train Test
 A3/5E. Loweimi

Fig. 38



  

Training with Three Examples; Similar ...

Train Test  A4/5E. Loweimi

Fig. 39

● FCNs learn const + noise

● CNNs learn ...
– Shallow ↔ identity
– Deep ↔ const
– Int. ↔ edge detector (?)

● What is the const, here?
– Interpolation, simpler pattern or ...



  

CIFAR-10 – FCNs

● Similar to MNIST→ output = training example +  White noise

– No Chance for learning identity mapping (generalisation)

– Shallow network: White noise is dominant (hallucination)

– Deeper network: training example is dominant (memorisation)

i in Hi: 
#hidden_Lay

 A5/5E. Loweimi

Fig. 42



  

CIFAR-10 – CNNs
● Similar to MNIST ...

– Shallow → learns identity
● Generalisation

– Deep → learns constant
● Memorisation

– Intermediate → edge detector
● Hallucination
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128 5x5 channels

Fig. 42

i in Ci: #hidden_Layers
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