Recent Advances in Understanding and Interpreting the DNNs

Erfan Loweimi* and Samira Loveymi ${ }^{\dagger}$

*Research Associate, King's College London (KCL)
${ }^{\dagger}$ Adjunct Lecturer, Shahid Chamran University of Ahvaz

Motivation ...

- Why is understanding DNNs important?

Motivation ...

- Why is understanding DNNs important?
- Reliable validation \rightarrow Safer practice
- E.g., self-driving car ... no margin for error
- Extract new insights \rightarrow Better practice
- E.g., more efficient training ... with less data
- Information Bottleneck
- Over-parameterisation and Generalisation
- Interpretation/Visualisation of Filters/Activations

Outlines

- Information Bottleneck Why do DNNs generalise well?
- Over-parameterisation and Generalisation
- Interpretation/Visualisation of Filters/Activations

Outlines (Part I)

- Information Bottleneck
- Over-parameterisation and Generalisation
- Interpretation/Visualisation of Filters/Activations

Information - Definition

- Information \equiv Average Surprise
- Information $. . \geq 0, \propto 1 / P$, additive for independent RV*s

Information - Definition

- Information \equiv Average Surprise
- Information $. . \geq 0, \propto 1 / P$, additive for independent RV*s

$$
H(X)=\mathbb{E}\left[\log \frac{1}{P(x)}\right]=\sum_{x \in \mathcal{X}} P(x) \log \frac{1}{P(x)}
$$

Information - Definition

- Information \equiv Average Surprise
- Information $. . . \geq 0, \boldsymbol{\alpha} 1 / P$, additive for independent RV*s
- Quantitatively measured by Entropy

$$
H(X)=\mathbb{E}\left[\log \frac{1}{P(x)}\right]=\sum_{x \in \mathcal{X}} P(x) \log \frac{1}{P(x)}
$$

Entropy over Time

R. Clausius
L. Boltzmann

$$
d S=\frac{d Q}{T} \quad S=k_{B} \log W \quad S=-k_{B} \sum_{i} p_{i} \log p_{i}
$$

$H=-\sum_{i} p_{i} \log _{2} p_{i}$
1870
1876
1948

Claude Shannon, the founder of information theory, invented a way to measure 'the amount of information' in a message without defining the word 'information' itself, nor even addressing the question of the meaning of the message.

Information, The New Language of Science, Ch. 4, p. 28

Mutual Information (MI) ... Idea

- A measure for Information X gives about Y (or vice verse)

Mutual Information (MI) ... Idea

- Think of cross-correlation ...

Cross-correlation
(CC)

Mutual Information (MI) ... Idea

- Think of cross-correlation ... but non-linear

Cross-correlation
(CC)

MI ... Definition

$$
\left.I(X ; Y)=D_{K L} P(x, y) \| P(x) P(y)\right)
$$

MI ... Definition

$$
\left.I(X ; Y)=D_{K L} P(x, y) \| P(x) P(y)\right)
$$

$$
D_{K L}(P \| Q)=-\sum_{x \in X} P(x) \log \frac{Q(x)}{P(x)}=H(P, Q)-H(P)
$$

* $D_{K L}$: Kullback-Leibler Divergence

MI ... Definition

$$
\left.I(X ; Y)=D_{K L} P(x, y) \| P(x) P(y)\right)
$$

$$
\text { If } X \perp Y=>I(X, Y)=0
$$

$$
D_{K L}(P \| Q)=-\sum_{x \in X} P(x) \log \frac{Q(x)}{P(x)}=H(P, Q)-H(P)
$$

* $D_{K L}$: Kullback-Leibler Divergence

MI ... Properties

- Data Processing Inequality (DPI)
- ... Post-processing cannot increase information ...
- Markov Chain: $X \rightarrow T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \ldots$
- $I\left(X ; T_{1}\right) \geq I\left(X ; T_{2}\right) ; \quad I\left(T_{1} ; T_{2}\right) \geq I\left(X ; T_{2}\right)$
- Transformation Invariance
- $I(X ; Y)=I(f(X) ; g(Y))$ where f \& g are invertible functions

Rate-Distortion Theory

- Encode X by T ...
- Obj. Minimal Rate
- s.t. Distortion $\leq \mathrm{D}_{\max }$

X: Observation
Y: Variable of interest
T: Representation of X

Information Bottleneck (IB)

- Turn finding T to a learning problem using MI ...

Compression/

Minimality/Complexity
Sufficiency/Accuracy

$$
\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}
$$

Information Bottleneck (IB)

- Turn finding T to a learning problem using MI ...

Compression/
Minimality/Complexity

Fidelity/
Sufficiency/Accuracy

$$
\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}
$$

IDEALLY ... in coding ...
-I(T;X) \rightarrow as LOW as possible (min Rate)
$-I(T ; Y) \leftrightarrow$ as HIGH as possible (min Distortion)

Opening the Black Box of DNNs via Information Bottleneck

Recent advances ...

Opening the black box ...

Encoder

Markov Chain : $Y \leftrightarrow X \rightarrow T \rightarrow \hat{Y}$

Information Plane

$$
Y_{\rightarrow} X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i \rightarrow} T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}
$$

Information Plane

$Y_{\rightarrow} X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i \rightarrow} \boldsymbol{T}_{i+1} \rightarrow \ldots \rightarrow \hat{Y}$

A point for each epoch and $\underline{T_{i}} . .$.

$$
Y_{\rightarrow} X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i \rightarrow} T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}
$$

Information Plane

$Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i} \rightarrow T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}$

$$
\begin{aligned}
& I\left(X ; T_{i-1}\right) \geq I\left(X ; T_{i}\right) \geq I\left(X ; T_{i+1}\right) \\
& I\left(Y ; T_{i-1}\right) \geq I\left(Y ; T_{i}\right) \geq I\left(Y ; T_{i+1}\right)
\end{aligned}
$$

$$
Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i} \rightarrow T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}
$$

Information Plane

$Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i} \rightarrow T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}$

$$
\begin{aligned}
& I\left(X ; T_{i-1}\right) \geq I\left(X ; T_{i}\right) \geq I\left(X ; T_{i+1}\right) \\
& I\left(Y ; T_{i-1}\right) \geq I\left(Y ; T_{i}\right) \geq I\left(Y ; T_{i+1}\right)
\end{aligned}
$$

$$
Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i} \rightarrow T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}
$$

Information Plane

$Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i \rightarrow} T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}$

```
IDEALLY ... in coding ...
\(-I(T ; X) \leftrightarrow\) as LOW as possible (min Rate)
\(-I(T ; Y) \leftrightarrow\) as HIGH as possible (min Distortion)
```


$$
\begin{aligned}
& I\left(X ; T_{i-1}\right) \geq I\left(X ; T_{i}\right) \geq I\left(X ; T_{i+1}\right) \\
& I\left(Y ; T_{i-1}\right) \geq I\left(Y ; T_{i}\right) \geq I\left(Y ; T_{i+1}\right)
\end{aligned}
$$

Information Plane

$$
Y \rightarrow X \rightarrow \ldots \rightarrow T_{i-1} \rightarrow T_{i} \rightarrow T_{i+1} \rightarrow \ldots \rightarrow \hat{Y}
$$

$$
\begin{aligned}
& \text { IDEALLY } \ldots \text { in coding ... } \\
& -I(T ; X) \leftrightarrow \text { as LOW as possible (min Rate) } \\
& -I(T ; Y) \leftrightarrow \text { as HIGH as possible (min Distortion) }
\end{aligned}
$$

IDEALLY ... in learning ...

$-I(T ; X) \leftrightarrow$ as LOW as possible (discard irrelevant info)
$-I(T ; Y) \leftrightarrow$ as HIGH as possible (keep relevant info)

$$
\begin{aligned}
& I\left(X ; T_{i-1}\right) \geq I\left(X ; T_{i}\right) \geq I\left(X ; T_{i+1}\right) \\
& I\left(Y ; T_{i-1}\right) \geq I\left(Y ; T_{i}\right) \geq I\left(Y ; T_{i+1}\right)
\end{aligned}
$$

Information Plane

Ideal solution

$$
\begin{aligned}
& \text { IDEALLY } \ldots \text { in coding ... } \\
& -I(T ; X) \leftrightarrow \text { as LOW as possible (min Rate) } \\
& -I(T ; Y) \leftrightarrow \text { as HIGH as possible (min Distortion) }
\end{aligned}
$$

IDEALLY ... in learning ...

$-I(T ; X) \leftrightarrow$ as LOW as possible (discard irrelevant info)
$-I(T ; Y) \leftrightarrow$ as HIGH as possible (keep relevant info)

Information Plane

Ideal solution

IDEALLY ... in learning ...
$-I(T ; X) \leftrightarrow$ as LOW as possible (discard irrelevant info)
$-I(T ; Y) \leftrightarrow$ as HIGH as possible (keep relevant info)

Learning from IB view

Learning from IB view

- Two distinct stages ...
- Stage (1): A \rightarrow C
- Stage (2): C \rightarrow E

Stage (1): $A \rightarrow C$

- $\Delta I_{Y}>0$ and $\Delta I_{X}>0$
- Fitting
- Δ Empirical_risk ≤ 0
- Fast

Stage (1): $A \rightarrow C$

- $\Delta I_{Y}>0$ and $\Delta I_{X}>0$
- Fitting
- Δ Empirical_risk ≤ 0
- Fast

Stage (2): $\mathrm{C} \rightarrow \mathrm{E}$

- $\Delta I_{Y}>0$ and $\Delta I_{x}<0$
- Compression
- Forget irrelevant info
- Δ Empirical_risk ≈ 0
- Slow

Stage (2): $C \rightarrow E$

- $\Delta I_{Y}>0$ and $\Delta I_{X}<0$
- Compression
- Forget irrelevant info
- Δ Empirical_risk ≈ 0
- Slow

Stage (2): $C \rightarrow E$

- $\Delta I_{Y}>0$ and $\Delta I_{X}<0$
- Compression
- Forget irrelevant info
- Δ Empirical_risk ≈ 0
- Slow

Stage (2): $C \rightarrow E$

- $\Delta I_{Y}>0$ and $\Delta I_{x}<0$
- Compression
- Forget irrelevant info
- Δ Empirical_risk ≈ 0
- Slow

Learning has two stages ...

1) Drift
 2) Diffusion

$A \longrightarrow C \not \subset \Delta^{r} A^{r}$

Learning has two stages ...

1) Drift

2) Diffusion

Random walk

SNR of Gradient

$$
\mathrm{SNR} \triangleq \frac{\operatorname{Mean}\left(\left\|\nabla W_{l}\right\|\right)}{S T D\left(\left\|\nabla W_{l}\right\|\right)}
$$

SNR of Gradient

1) Drift

 Random walk

Stochasticity during diffusion is responsible for generalisation ...

$$
\mathrm{SNR} \triangleq \frac{\operatorname{Mean}\left(\left\|\nabla W_{l}\right\|\right)}{S T D\left(\left\|\nabla W_{l}\right\|\right)}
$$

Stochasticity of the Diffusion Improves the Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR
Diffusion $(C \rightarrow E) \rightarrow$ Low SNR

Stochasticity of the Diffusion Improves the Generalisation

Diffusion's stochasticity ...
\rightarrow Add noise to irrelevant features

\rightarrow Forget irrelevant details

Effect of ... Depth

* Deeper network \rightarrow Faster training ...
 ==>> Better generalisation with fewer epochs

Effect of ... Training Data Amount (1)

* Less data ... may lead to $\Delta l_{Y}<0$ \& never reaching [1]

Effect of ... Training Data Amount (2)

- More training data ...
- Ix: Minor reduction \downarrow
- Ir: Major increase \uparrow

- More training data ...
- Ix: Minor reduction \downarrow
- Ir: Major increase \uparrow
- Good generalisation
- Ix: low, Ir: high

Effect of ... Batch Size (BS)

- The smaller the BS, the higher the stochasticity of GD

Effect of ... Batch Size (BS)

- The smaller the BS, the higher the stochasticity of GD

Drift to diffusion transition:

$$
\operatorname{argmin} \frac{d}{d t} S N R \approx \operatorname{argmax} I(X ; T)
$$

Effect of ... Batch Size (BS)

- The smaller the BS, the higher the stochasticity of GD

Drift to diffusion transition: $\operatorname{argmin} \frac{d}{d t} S N R \approx \operatorname{argmax} I(X ; T)$
\qquad

[^0]
Criticisms (1)

- Two-phase process is NOT generic [3]!
- ReLU ... Adaptive binning helps [4] ...
(

OpenReview.ne	Search icir 2018 canference	Q	1 login
\leftarrow Coto ILLR 2018 Conference homepage			
On the Information Bottleneck Theory of Deep Learning Andrew Michoel Saxe, Yarnini Bansal, Joel Dopello, Modhu Advani, Atteny Kolchinsky, Brendan Daniel Iracey, Dovid Doniel Cox theory of deep learing which maies three specific claims: first, thut dosp newatas undergo two detinct phases concesing of an ritial fring phase and a subsequert compressian phase, sacond, that the corpression phase is causally relatad to the excellart gensralaston performaxes of deep notwork; and third, tat the compression phase occurs de to the dffision like behavior of sioshasti: gadiert deacent Here we show that none of these claims hald true in the general case. Througha combinstion of anslytcal reade and simultion, we dermastrate thet te irformation plare tojectory's retweris that do nox compress are sell capahis af generalization and vice wercs. Nex, we show that the compressian phare, when it oxits, dhes not arise from stochastcity in training by demanstrating that we can roplicate the IB findings using ful bath gradent destent rather than stochastic gradient descort. Finally, we show that when an inqut domin consits of a subset of taskrelverts and tasiirceleamt information, tidjen representatiore do compress the taskirrelerant iformation although the oweral ifformation abost the rput may monotonicaly incease with training time, and that this concression happere corcurretiy with the fiting process rather than during a subsequent compression period. TL:DR: We show tist several daims of the iformalizn boiteredk theory of deep learing are nut ive in the general case. Kegwords: informabivibouleneck, deep learring deep inesr nesmorks			

Criticisms (2)

- Two-phase process is NOT generic [3]!
- ReLU ... Adaptive binning helps [4]
- No causal relationship between stochasticity of SGD (compression/forgetting) \& generalisation [3]
- i-RevNet [5] ... good gen. w/o forgetting

Criticisms (3)

- Two-phase process is NOT generic [3]!
- ReLU ... Adaptive binning helps [4]
- No causal relationship between stochasticity of SGD (compression/forgetting) \& generalisation [3]
- i-RevNet [5] ... good gen. w/o forgetting
- Computing MI is challenging [6] ... especially for random vectors

Conclusion (Part I)

- Novelty: DNNs from Information Theory's perspective
- $I\left(X ; T_{i}\right)$ an $I\left(Y ; T_{i}\right)$ plotted in information plane
- Learning consists of two stages: 1) Drift, 2) Diffusion
- Why DNNs generalise well?
- Stochasticity of GD \rightarrow Diffusion \rightarrow forgetting irrelevant info

Outlines (Part II)

- Information Bottleneck
- Over-parameterisation and Generalisation
- Interpretation/Visualisation of Filters/Activations

DNNs ... Generalisation ...

- Why do DNNs generalise well?

DNNs ... Generalisation ...

- Why do DNNs generalise well?

Underfitting: High Bias
 Overfitting: High Variance

DNNs ... Generalisation ...

- Why do DNNs generalise well?

DNNs ... Generalisation ...

- Why do DNNs generalise well?
- even when over-parameterised \rightarrow P/N >> 1

Generalisation Error

- Classic statistical learning theory ...
- Upper bound for $E_{\text {gen }} \leftrightarrow$ Capacity
- Over-parameterisation ($\mathrm{P} / \mathrm{N} \gg 1$) is bad!

$$
E_{\text {gen }}=E_{\text {test }}-E_{\text {train }} \stackrel{\leq f_{1}(\# \text { parameters })}{f_{2}(N)} \stackrel{\text { e.g. }}{=} \frac{f_{1}(V C \text {-dim })}{f_{2}(N)}
$$

Over-parameterisation is good (1)

CIFAR-10	\#train: 50,000	\#parameter/\#train
Inception	$1,649,402$	33
AlexNet	$1,387,786$	28
MLP 1×512	$1,209,866$	24
ImageNet	\#train: $1,200,000$	
Inception V3	$23,885,392$	20
AlexNet	$61,100,840$	51
ResNet-\{18; 152$\}$	$11,689,512 ; 60,192,808$	$10 ; 50$
VGG-\{11;19\}	$132,863,336 ; 143,667,240$	$110 ; 120$

[8]

Over-parameterisation is good (2)

If over-parametrisation is good ...

- \#parameters does NOT represent model complexity
- \#parameters does NOT upperbound $E_{\text {gen }}$
- Classic views to (Capacity $\leftrightarrow E_{\text {gen }}$) are NOT sufficient [8-12]

Why DNNs generalise well?

- Classic views ... \#P \& \#N ... insufficient!
- DNNs generalise well because of ...
- Optimisation?
- Regularisation?
- ...

Randomisation Test

- Training data: $\left\{x_{i}, y_{i}\right\}, i=1,2, \ldots, N$
- Break the $\left(x_{i}, y_{i}\right)$ relationship by randomising x_{i} or y_{i}

[8]

Randomisation Test

- Training data: $\left\{x_{i}, y_{i}\right\}, i=1,2, \ldots, N$
- Break the $\left(x_{i}, y_{i}\right)$ relationship by randomising x_{i} or y_{i}
- Learning/Generalisation is IMPOSSIBLE!
- How about optimisation? (IM)Possible?

Randomisation Test - Results (1)

Hyper-parameters are identical

DNN shatters $\left(E_{\text {train }}=0\right)$ training data, even with random data/labels.

> This is fitting ... agnostic to quality of learning!

Randomisation Test - Results (2)

$$
E_{\text {gen }}=E_{\text {test }}-E_{\text {train }}=<15,90,90,90,90
$$

Hyper-parameters are identical
$E_{g e n}$ is very different even when $\underline{N}, \underline{P}$ and architecture are the same!

$$
\left.E_{g e n}\right|_{E_{\text {train }}=0} \leq O\left(\frac{V C d i m}{N}\right)
$$

Randomisation Test - Results (3)

Hyper-parameters are identical

Optimisation remains easy, ...

 even when learning is impossible! ... Just slows down.

Randomisation Test - Results (3)

Optimisation remains easy, ...

 even when learning is impossible! ... Just slows down.Optimisation $↔$ Fitting [YES]
Optimisation \leftrightarrow Learning [NO]

Hyper-parameters are identical

Local vs Global Optima ...

- Critical points ... local/global min/max or saddle
- Positive/negative/in-definite Hessian \rightarrow min/max/saddle

Local vs Global Optima ...

- Critical points ... local/global min/max or saddle
- Positive negative/in-definite Hessian \rightarrow min/max/saddle
- In high dimensional spaces ...
- Most of the critical points are saddle point [13]
- Local minima are ikely to be as good as global minima [14,15]

Local vs Global Optima ...

-
-
- In high dimensional spaces ...
-
- Local minima are likely to be as good as global minima [14,15]
. "... struggling to find the global minimum ... is not useful in practice and may lead to overfitting ... [15]"

Explicit Regularisation Effect

CIFAR-10
WI Reg.
WIO Reg.

Max Performance Improvement ...

- By Reg.: +3.56 (85.75 \rightarrow 89.31)
- By Arch.: +35.24 (50.51 \rightarrow 85.75)

model \# params	random crop	weight decay	train accuracy	test accuracy
Inception 1,649,402	yes	yes	100.0	89.05
	yes	no	100.0	89.31
	no	yes	100.0	86.03
	no	no	100.0	85.75
(fitting random labels)	no	no	100.0	9.78
Inception w/o BatchNorm 1,649,402 (fitting random labels)	no	yes	100.0	83.00
	no	no	100.0	82.00
	no	no	100.0	10.12
Alexnet $\quad 1,387,786$	yes	yes	99.90	81.22
	yes	no	99.82	79.66
	no	yes	100.0	77.36
	no	no	100.0	76.07
(fitting random labels)	no	no	99.82	9.86
MLP $3 \times 512 \quad 1,735,178$(fitting random labels)	no	yes	100.0	53.35
	no	no	100.0	52.39
	no	no	100.0	10.48
MLP 1x512 1,209,866(fitting random labels)	no	yes	99.80	50.39
	no	no	100.0	50.51 [8]
	no	no	99.34	10.61 [8]

Explicit Regularisation Effect

Regularisation helps ...
incrementally NOT fundamentally

Architecture plays a critical role

CIFAR-10
W/ Reg.
W/O Reg.

model \# params	random crop	weight decay	train accuracy	test accuracy
Inception 1,649,402	yes	yes	100.0	89.05
	yes	no	100.0	89.31
	no	yes	100.0	86.03
	no	no	100.0	85.75
(fitting random labels)	no	no	100.0	9.78
Inception w/o BatchNorm 1,649,402 (fitting random labels)	no	yes	100.0	83.00
	no	no	100.0	82.00
	no	no	100.0	10.12
Alexnet 1,387,786	yes	yes	99.90	81.22
	yes	no	99.82	79.66
	no	yes	100.0	77.36
	no	no	100.0	76.07
(fitting random labels)	no	no	99.82	9.86
MLP 3x512 1,735,178(fitting random labels)	no	yes	100.0	53.35
	no	no	100.0	52.39
	no	no	100.0	10.48
MLP 1x512 1,209,866(fitting random labels)	no	yes	99.80	50.39
	no	no	100.0	50.51 [8]
	no	no	99.34	10.61 [8]

Implicit Regularisation in SGD ...

Back Propagation

$$
\begin{gathered}
x \xrightarrow{W^{l_{0}}} \xrightarrow{h_{1}} \xrightarrow{W^{l_{1}}} \xrightarrow{W_{j k}^{(i)}=W_{j k}^{(i-1)}-\eta o_{j} \delta_{k}} \\
\delta_{k}= \begin{cases}\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in y \\
\left(\sum_{l \in L} \delta_{l} W_{k l}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in h_{i}\end{cases} \\
W^{l_{2}}=f(E) \\
W^{l_{1}}=f\left(E, W^{l_{2}}\right) \\
W^{l_{0}}=f\left(E, W^{l_{2}}, W^{l_{1}}\right) \\
\text { ces } \ldots
\end{gathered}
$$

Implicit Regularisation in SGD ...

Back Propagation

Implicit regularisation ... weights are tied together ...

$$
x \xrightarrow{W^{l_{0}}} n_{1} \xrightarrow{W^{l_{1}}} n_{2} \xrightarrow{W^{l_{2}}} y \rightarrow y
$$

$$
\begin{gathered}
W_{j k}^{(i)}=W_{j k}^{(i-1)}-\eta o_{j} \delta_{k} \\
\delta_{k}= \begin{cases}\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in y \\
\left(\sum_{l \in L} \delta_{l} W_{k l}\right) o_{k}\left(1-o_{k}\right), & \text { if } k \in h_{i}\end{cases} \\
W^{l_{2}}=f(E)
\end{gathered}
$$

$$
W^{l_{0}}=f\left(E, W^{l_{2}}, W^{l_{1}}\right)
$$

Implicit Regularisation in SGD ...

Back Propagation

Implicit regularisation ... weights are tied together ...

Capacity ミ \#Params_effective \#Params_effective << \#Params

$$
\begin{gathered}
\delta_{k}=\left\{\begin{array}{cl}
\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in y \\
\left(\sum_{l \in L} \delta_{l} W_{k l}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in h_{i}
\end{array}\right. \\
W^{l_{2}}=f(E) \\
W^{l_{1}}=f\left(E, W^{l_{2}}\right)
\end{gathered}
$$

$$
W^{l_{0}}=f\left(E, W^{l_{2}}, W^{l_{1}}\right)
$$

Implicit Regularisation in SGD ...

Back Propagation

Implicit regularisation ... weights are tied together ...

Capacity
(model complexity)

$$
\begin{gathered}
W_{j k}^{(i)}=W_{j k}^{(i-1)}-\eta o_{j} \delta_{k} \\
\delta_{k}= \begin{cases}\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in y \\
\left(\sum_{l \in L} \delta_{l} W_{k l}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in h_{i}\end{cases} \\
W^{l_{2}}=f(E) \\
W^{l_{1}}=f\left(E, W^{l_{2}}\right) \\
W^{l_{0}}=f\left(E, W^{l_{2}}, W^{l_{1}}\right)
\end{gathered}
$$

Implicit Regularisation in SGD ...

Back Propagation

Implicit regularisation ... weights are tied together ...

... is responsible for good generalisation of the DNNs.

$$
\delta_{k}= \begin{cases}\left(o_{k}-t_{k}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in y \\ \left(\sum_{l \in L} \delta_{l} W_{k l}\right) o_{k}\left(1-o_{k}\right) & , \text { if } k \in h_{i}\end{cases}
$$

$$
\begin{aligned}
& W^{l_{2}}=f(E) \\
& W^{l_{1}}=f\left(E, W^{l_{2}}\right)
\end{aligned}
$$

$$
W^{l_{0}}=f\left(E, W^{l_{2}}, W^{l_{1}}\right)
$$

Conclusion (Part II)

- Classic wisdom about generalisation is insufficient
- \#Parameters does NOT represent model complexity
- Optimisation remains easy, even when learning is hard
- Explicit regularisation helps, incrementally NOT fundamentally
- Why do DNNs generalise well?
- Implicit regularisation in SGD and ...

Outlines (Part III)

- Information Bottleneck
- Over-parameterisation and Generalisation
- Interpretation/Visualisation of Filters/Activations

We will investigate ...

- Seriousness of gradient vanishing in low layers [16]
- Linear separability in high layers [17]

We will investigate ...

- Seriousness of gradient vanishing in low layers [16]
- Linear separability in high layers [17]

Seriousness of Gradient Vanishing

$$
\overline{\left|\nabla_{W} E\right|} \pm \sigma
$$

gradient vanishing ...

First Layer

Seriousness of Gradient Vanishing

$$
\overline{\left|\nabla_{W} E\right|} \pm \sigma
$$

In light of gradient vanishing ... How optimal the first layer is?

How to investigate it?

First Layer

[^1]
The proposed task ...

- Task: Phone recognition (TIMIT) using raw waveform

The proposed task ...

- Task: Phone recognition (TIMIT) using raw waveform
- How: add noise to training data ...

Gradient Vanishing Seriousness

- Task: Phone recognition (TIMIT) using raw waveform
- How: add noise to training data
- Metric: Average Frequency Response (AFR)

$$
\mathrm{AFR}=\frac{1}{C} \sum_{c=1}^{C}\left|H_{c}(\omega)\right|
$$

AFR Dynamics (1)

AFR Dynamics (1)

Epoch 20

AFR Dynamics (2)

Using phone labels, the model finds the noisy sub-bands and filters them out.

AFR Dynamics (2)

Epoch 20

> Using phone labels, the model finds the noisy sub-bands and filters them out.

Gradient vanishing is NOT a serious problem ...

Effect of Activation Function

[16]

> * ... Sigmoid and Tanh ... Noisy sub-bands successfully found ...
> * Gradient vanishing is NOT a serious problem in a reasonable setup!

We will investigate ...

- Seriousness of gradient vanishing in low layers [16]
- Linear separability in high layers [17]

Towards output layer ...

- DNN should
- Filter out irrelevant information

Towards output layer ...

- DNN should ...
- Filter out irrelevant information
- Enhance linear separability

Investigating the Linear Separability ...

- Task: A binary classification (Question F, ImageCLEF2015)
- How: Dump activations \rightarrow Dim. reduction to 2D (t-SNE, PCA, ...) \rightarrow
\rightarrow Monitor linear separability across layers/epochs

Epoch: 1

t-SNE

$\begin{array}{llllllll}-40 & -30 & -20 & -10 & 0 & 10 & 20 & 30\end{array}$ Shahid Chamran University of Ahvaz

$X \rightarrow \mathrm{CNN} \ldots \mathrm{H} 2 \rightarrow \mathrm{H} 3 \rightarrow \mathrm{H} 4 \rightarrow \mathrm{Y}$

Epoch: 5

H4

H4

$\mathrm{X} \rightarrow \mathrm{CNN} \ldots \mathrm{H} 2 \rightarrow \mathrm{H} 3 \rightarrow \mathrm{H} 4 \rightarrow \mathrm{Y}$

Epoch: 10

Epoch: 15

t-SNE

$X \rightarrow \mathrm{CNN} \ldots \mathrm{H} 2 \rightarrow \mathrm{H} 3 \rightarrow \mathrm{H} 4 \rightarrow \mathrm{Y}$

Epoch: 20

MVIP2022
$\mathrm{X} \rightarrow \mathrm{CNN} \ldots \mathrm{H} 2 \rightarrow \mathrm{H} 3 \rightarrow \mathrm{H} 4 \rightarrow \mathrm{Y}$

Conclusion (Part III)

- We studied/visualised the ...
- Gradient vanishing seriousness
- Linear separability across layers/epochs
- Providing interpretation/visualisation make the reviewer/readers happy :-), embed them into your work!

That's It!

- Thank you for Your Attention!
- Q\&A
- References \downarrow

References (Part I)

[1] R. Shwartz-Ziv and N. Tishby, "Opening the black box of deep neural networks via information," CoRR, vol. abs/1703.00810, 2017.
[2] N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method," in Proc. of the 37th Annual Allerton Conference on Communication, Control and Computing, 1999, pp. 368-377.
[3] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox, "On the information bottleneck theory of deep learning." in ICLR, 2018.
[4] I. Chelombiev, C. J. Houghton, and C. O'Donnell, "Adaptive estimators show information compression in deep neural networks," in ICLR, 2019.
[5] J.-H. Jacobsen, A. W. M. Smeulders, and E. Oyallon, "i-RevNet: Deep invertible networks," in ICLR, 2018.
[6] M. Noshad, Y. Zeng, and A. O. Hero, "Scalable mutual information estimation using dependencegraphs," in ICASSP, 2019.
[7] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Wiley-Interscience, 2006.

References (Part II)

[8] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, "Understanding deep learning requires rethinking generalization," In ICLR, 2017.
[9] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, "Understanding deep learning (still) requires rethinking generalization," Commun. ACM, vol. 64, no. 3, p. 107-115, 2021.
[10] C. Zhang, S. Bengio, M. Hardt, M. C. Mozer, and Y. Singer, "Identity crisis: Memorization and generalization under extreme overparameterization," In ICLR, 2020.
[11] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro, "Exploring generalization in deep learning," In NIPS, 2017.
[12] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, "Fantastic generalization measures and where to find them," In ICLR, 2020.
[13] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, "Identifying andattacking the saddle point problem in high-dimensional non-convex optimization," in NIPS, 2014.
[14] S. Bhojanapalli, B. Neyshabur, and N. Srebro, "Global optimality of local search for low rankmatrix recovery," in NIPS, 2016.
[15] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun, "The Loss Surfaces of Multilayer Networks," in MVIP2023PMLR, 2015.

References - Part III

[16] E. Loweimi, P. Bell, and S. Renals, "On the robustness and training dynamics of raw waveform models," in Proc. INTERSPEECH, 2020.
[17] S. Loveymi, M. H. Dezfoulian, and M. Mansoorizadeh, "Automatic generation of structured radiology reports for volumetric computed tomography images using question-specific deep feature extraction and learning," in Journal of medical signals and sensors, 2016.

[^0]: * The smaller the BS, the faster the transition to diffusion ...

[^1]: * Error or accuracy reflect DNN's collective behaviour
 * Layer-dependent metric is needed ...

