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● Why is understanding DNNs important?
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Motivation … 
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● Why is understanding DNNs important?
  

– Reliable validation → Safer practice 
● E.g., self-driving car ... no margin for error

– Extract new insights → Better practice 
● E.g., more efficient training … with less data

Recent advances ...



  

Outlines
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● Information Bottleneck
 

● Over-parameterisation and Generalisation
 

● Interpretation/Visualisation of Filters/Activations

Recent advances ...
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Why do DNNs generalise well? 



  

Outlines (Part I)
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● Information Bottleneck
 

● Over-parameterisation and Generalisation
 

● Interpretation/Visualisation of Filters/Activations

Recent advances ...



  

● Information ≡ Average Surprise
● Information ... ≥ 0,    1/P, additive for independent RV*s

Information – Definition
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● Information ≡ Average Surprise
● Information ... ≥ 0,    1/P, additive for independent RV*s
● Quantitatively measured by Entropy

Information – Definition

  3/60Recent advances ...* RV: random variable

Entropy



  

Entropy over Time
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R. Clausius C. Shannon  J. Gibbs L. Boltzmann

1865 1870 1876 1948

Recent advances ...



Claude Shannon, the founder of information 
theory, invented a way to measure 'the amount of 
information' in a message without defining the 
word 'information' itself, nor even addressing the 
question of the meaning of the message.

Information, The New Language of Science, Ch. 4, p. 28

  4/60Recent advances ...



  

Mutual Information (MI) … Idea
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●  A measure for Information X gives about Y (or vice verse)

Recent advances ...

H(Y)H(X)

H(X|Y) H(Y|X)

H(X,Y)

I(X;Y)
* I(X;Y): Mutual Information
   

* H(X): Entropy
   
 

* H(X|Y): Conditional entropy
   
 

* H(X,Y): Joint entropy

Recent advances ...



  

Mutual Information (MI) … Idea
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● Think of cross-correlation …

Recent advances ...

CC = 0  ... but ... MI != 0

Cross-correlation
(CC)

x1

x2



  

Mutual Information (MI) … Idea
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● Think of cross-correlation … but non-linear

Recent advances ...

CC = 0  ... but ... MI != 0

Cross-correlation
(CC)

x1

x2



  

MI … Definition

Recent advances ...

P(x)

P(y)

P(x,y) MI
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DKL
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Cross-entropy  Entropy

* DKL : Kullback-Leibler Divergence

P(x)

P(y)

P(x,y) MI
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DKL



  

MI … Definition

Recent advances ...

Cross-entropy  Entropy

* DKL : Kullback-Leibler Divergence

P(x)

P(y)

P(x,y) MI If X     Y => I(X,Y) = 0
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DKL



  

MI … Properties
● Data Processing Inequality (DPI)

– … Post-processing cannot increase information …

– Markov Chain: X → T1 → T2 → T3 → …  
● I(X;T1)  ≥  I(X;T2);      I(T1;T2)  ≥  I(X;T2) 

● Transformation Invariance
– I(X;Y) = I(f(X); g(Y)) where f & g are invertible functions

Recent advances ...   8/60



  

Rate-Distortion Theory

  9/60Recent advances ...

● Encode X by T ...
– Obj.   Minimal Rate
– s.t.     Distortion ≤ Dmax

Distortion

   
   

R
a

te

X           T          Y
Encoding Decoding

                  

X: Observation
Y: Variable of interest
T: Representation of XEn De



  

Information Bottleneck (IB)

 10/60Recent advances ...

● Turn finding T to a learning problem using MI ...

X           T          Y
Encoding Decoding

                  

Compression/
Minimality/Complexity

Fidelity/
Sufficiency/Accuracy



  

Information Bottleneck (IB)

 10/60Recent advances ...

● Turn finding T to a learning problem using MI ...

X           T          Y
Encoding Decoding

                  

Compression/
Minimality/Complexity

Fidelity/
Sufficiency/Accuracy

IDEALLY … in coding ...
   – I(T;X) ↔ as LOW as possible (min Rate)        
   – I(T;Y) ↔ as HIGH as possible (min Distortion)



  
Recent advances ...

Opening the Black Box of DNNs
via Information Bottleneck



  

Opening the black box ...

11/60Recent advances ...

En De

X           T          Y
Encoder Decoder

                  



  

Y→X→…→Ti-1→Ti→Ti+1→…→Ŷ

Information Plane
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I(X;T)

I(
Y
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)



  

Y→X→…→Ti-1→Ti→Ti+1→…→Ŷ
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A point for each epoch and Ti ...
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I(X;T)
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Information Plane
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Information Plane
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IDEALLY … in learning ...
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    – I(T;Y) ↔ as HIGH as possible (keep relevant info)

IDEALLY … in coding ...
  – I(T;X) ↔ as LOW as possible (min Rate)         
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Information Plane

14/60Recent advances ...
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IDEALLY … in learning ...
    – I(T;X) ↔ as LOW as possible (discard irrelevant info)
    – I(T;Y) ↔ as HIGH as possible (keep relevant info)

Ideal solution

IDEALLY … in coding ...
  – I(T;X) ↔ as LOW as possible (min Rate)         
  – I(T;Y) ↔ as HIGH as possible (min Distortion)



  

Information Plane
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IDEALLY … in learning ...
    – I(T;X) ↔ as LOW as possible (discard irrelevant info)
    – I(T;Y) ↔ as HIGH as possible (keep relevant info)



  

Learning from IB view

15/60Recent advances ...

X

Ŷ

Y

L1

L2

L3

L4

L5[1]

Animation I(X;T)
I(

Y
;T

)

Epoch 1

Epoch N

https://www.youtube.com/watch?v=q45lPv9rev0


  

Learning from IB view
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● Two distinct stages ...
– Stage (1): A → C
– Stage (2): C → E

Recent advances ...

X

Ŷ

Y

L1

L2

L3

L4

L5

S
ta

ge
 (

1)

Stage (2)

[1]

Animation I(X;T)
I(

Y
;T

)

https://www.youtube.com/watch?v=q45lPv9rev0


  

Stage (1): A → C 
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● ΔIY  > 0 and ΔIx > 0

– Fitting

● ΔEmpirical_risk ≤ 0

● Fast

Recent advances ...
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Stage (2): C → E 

18/60

● ΔIY  > 0 and ΔIx < 0

– Compression

– Forget irrelevant info

● ΔEmpirical_risk ≈ 0

● Slow

Recent advances ...
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Stage (2): C → E 
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– Compression
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● ΔEmpirical_risk ≈ 0
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Stage (2): C → E 
● ΔIY  > 0 and ΔIx < 0

– Compression

– Forget irrelevant info

● ΔEmpirical_risk ≈ 0

● Slow
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18/60

I(
Y

;T
)



  

Learning has two stages …

Recent advances ...

1) Drift 2) Diffusion
X

Ŷ

Y

L1

L2

L3

L4

L5

A C E

19/60
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Learning has two stages …

Recent advances ...

1) Drift

-
-

-
-

-
-

E

2) Diffusion

Random walk

X

Ŷ

Y

L1

L2

L3

L4

L5

A C E

19/60

[1]

I(X;T)
I(

Y
;T
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SNR of Gradient

Recent advances ...

Low SNR
(slow)

High SNR
(fast)

1) Drift 2) Diffusion

Random walk

A C E C

20/60
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SNR of Gradient

Recent advances ...

Low SNR
(slow)

High SNR
(fast)

1) Drift 2) Diffusion

Random walk

A C E

Stochasticity during diffusion is 
responsible for generalisation ... 

C

20/60

[1]



  

Stochasticity of the Diffusion 
Improves the Generalisation

Drift (A→C) → High SNR
Diffusion (C→ E) → Low SNR

Recent advances ... 21/60



  

Stochasticity of the Diffusion 
Improves the Generalisation

Diffusion’s stochasticity ...

→ Add noise to irrelevant features

→ Forget irrelevant details

Noise Cov 
Matrix

Relevant
Irrelevant

Drift (A→C) → High SNR
Diffusion (C→ E) → Low SNR

Recent advances ... 21/60



  

Effect of … Depth

Recent advances ...

* Deeper network → Faster training ...
 

   ==>> Better generalisation with fewer epochs

22/60

[1]

Ideal
solution



  

Effect of … Training Data Amount (1)

Recent advances ...

* Less data … may lead to ΔIY < 0 & never reaching

5% 45% 85%

ΔIY

ΔIY

23/60

[1]

Ideal
solution



  

Effect of … Training Data Amount (2)
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● More training data …
– IX: Minor reduction ↓
– IY: Major increase ↑

Recent advances ...

[1]



  

Effect of … Training Data Amount (2)

24/60

● More training data …
– IX: Minor reduction ↓
– IY: Major increase ↑

● Good generalisation
– IX: low, IY: high

Recent advances ...

[1]



  

Effect of … Batch Size (BS)
● The smaller the BS, the higher the stochasticity of GD

Recent advances ... 25/60
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Drift to diffusion transition:
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Effect of … Batch Size (BS)
● The smaller the BS, the higher the stochasticity of GD

Drift to diffusion transition:

Recent advances ...

* The smaller the BS, the faster 
the transition to diffusion ...

25/60



  

Criticisms (1) 

Recent advances ...

Tanh ReLU

● Two-phase process is NOT generic [3]!
– ReLU … Adaptive binning helps [4] …
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Criticisms (2) 

Recent advances ...

● Two-phase process is NOT generic [3]!
– ReLU … Adaptive binning helps [4] …

  

● No causal relationship between stochasticity of SGD 
(compression/forgetting) & generalisation [3]
– i-RevNet [5] … good gen. w/o forgetting
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Criticisms (3) 

Recent advances ...

● Two-phase process is NOT generic [3]!
– ReLU … Adaptive binning helps [4] …

  

● No causal relationship between stochasticity of SGD 
(compression/forgetting) & generalisation [3]
– i-RevNet [5] … good gen. w/o forgetting

  

● Computing MI is challenging [6] … especially for random vectors

26/60



  

Conclusion (Part I)
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● Novelty: DNNs from Information Theory’s perspective

● I(X;Ti) an I(Y;Ti) plotted in information plane

● Learning consists of two stages: 1) Drift, 2) Diffusion
 

● Why DNNs generalise well?
– Stochasticity of GD → Diffusion → forgetting irrelevant info

Recent advances ...



  

Outlines (Part II)
● Information Bottleneck

 

● Over-parameterisation and Generalisation
 

● Interpretation/Visualisation of Filters/Activations

Recent advances ...



  

DNNs … Generalisation …

28/60Recent advances ...

● Why do DNNs generalise well?

Optimal Capacity

Classic wisdom …

Capacity
(model complexity)

E
rr

or



  

DNNs … Generalisation …

28/60Recent advances ...

● Why do DNNs generalise well?

Underfitting: High Bias
 

Overfitting: High Variance
Optimal Capacity

Classic wisdom …

Capacity
(model complexity)

E
rr

or



  

DNNs … Generalisation …

Recent advances ...

● Why do DNNs generalise well?

DNNs

!
overfitting

X

28/60

E
rr

or

if Capacity ≡ #Parameters
Capacity

(model complexity)

//

Optimal Capacity



  

DNNs … Generalisation …

Recent advances ...

● Why do DNNs generalise well?
 

– even when over-parameterised → P/N >> 1

DNNs

!
overfitting

X

28/60

E
rr

or

if Capacity ≡ #Parameters
Capacity

(model complexity)

//

Optimal Capacity



  

Generalisation Error
● Classic statistical learning theory ...

– Upper bound for Egen ↔ Capacity
– Over-parameterisation (P/N >> 1) is bad!

≤

29/60Recent advances ...



  

Over-parameterisation is good (1)

Recent advances ...

CIFAR-10 #train: 50,000 #parameter/#train
Inception 1,649,402 33

AlexNet 1,387,786 28

MLP 1x512 1,209,866 24

ImageNet #train: 1,200,000

Inception V3 23,885,392 20

AlexNet 61,100,840 51

ResNet-{18; 152} 11,689,512; 60,192,808 10; 50

VGG-{11;19} 132,863,336; 143,667,240 110; 120

30/60

[8]



  

Over-parameterisation is good (2)

Recent advances ... 31/60

[8]



  

If over-parametrisation is good ...

32/60

● #parameters does NOT represent model complexity
 

● #parameters does NOT upperbound Egen

 

● Classic views to (Capacity ↔ Egen) are NOT sufficient [8-12]

Recent advances ...



  

Why DNNs generalise well?
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● Classic views … #P & #N ... insufficient!
● DNNs generalise well because of ...

– Optimisation?
– Regularisation?
– …

Recent advances ...



  

Randomisation Test

34/60

● Training data: {xi, yi}, i=1, 2, …, N

● Break the (xi,yi) relationship by randomising xi or yi

Recent advances ...

dog

horse

car

horse

...

permutation

[8]



  

Randomisation Test

34/60

● Training data: {xi, yi}, i=1, 2, …, N

● Break the (xi,yi) relationship by randomising xi or yi

● Learning/Generalisation is IMPOSSIBLE!
● How about optimisation? (IM)Possible?

Recent advances ...



  

Randomisation Test – Results (1)

Recent advances ...

Inception 
 

CIFAR10

Hyper-parameters are identical

This is fitting ... 
agnostic to quality of learning!

DNN shatters (Etrain=0) training 
data, even with random data/labels.

35/60

[8]



  

Randomisation Test – Results (2)

Recent advances ...

Inception 
 

CIFAR10

Hyper-parameters are identical

Egen is very different even when N, P 
and architecture are the same!

36/60

Egen = Etest – Etrain = <15, 90, 90, 90, 90

[8]



  

Randomisation Test – Results (3)

Recent advances ...

Inception 
 

CIFAR10

Hyper-parameters are identical

Optimisation remains easy, … 
even when learning is impossible!
… Just slows down. 

37/60

[8]



  

Randomisation Test – Results (3)

Recent advances ...

Inception 
 

CIFAR10

Hyper-parameters are identical

Optimisation remains easy, … 
even when learning is impossible!
… Just slows down. 

37/60

[8]

Optimisation ↔ Fitting      [YES]

Optimisation ↔ Learning  [NO] 



  

Local vs Global Optima ...
● Critical points … local/global min/max or saddle

– Positive/negative/in-definite Hessian → min/max/saddle
 

Recent advances ... 38/60



  

Local vs Global Optima ...
● Critical points … local/global min/max or saddle

– Positive/negative/in-definite Hessian → min/max/saddle
 

● In high dimensional spaces …
– Most of the critical points are saddle point [13]

– Local minima are likely to be as good as global minima [14,15]

Recent advances ... 38/60



  

Local vs Global Optima ...
● Critical points … local/global min/max or saddle

– Positive/negative/in-definite Hessian→ min/max/saddle
 

● In high dimensional spaces …
– Most of the critical points are saddle point [13]

– Local minima are likely to be as good as global minima [14,15]
 

✔ “… struggling to find the global minimum … is not useful in 
practice and may lead to overfitting … [15]”

Recent advances ... 39/60



  

Explicit Regularisation Effect

Recent advances ...

W/O Reg.W/ Reg.

40/60

[8]

CIFAR-10

Max Performance Improvement ...
  – By Reg.: +3.56 (85.75→ 89.31)  
  – By Arch.: +35.24 (50.51 → 85.75)



  

Explicit Regularisation Effect

Recent advances ...

W/O Reg.

Max Performance Improvement ...
  – By Reg.: +3.56 (85.75→ 89.31)  
  – By Arch.: +35.24 (50.51 → 85.75)

W/ Reg.

40/60

[8]

CIFAR-10

Regularisation helps … 
incrementally NOT fundamentally

Architecture plays a critical role



  

Implicit Regularisation in SGD ...

Recent advances ... 41/60



  

Implicit Regularisation in SGD ...

Recent advances ...

Implicit regularisation … 
weights are tied together ...
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Implicit Regularisation in SGD ...

Recent advances ...

Implicit regularisation … 
weights are tied together ...

41/60

Capacity ≡ #Params_effective
#Params_effective  <<  #Params



  

Implicit Regularisation in SGD ...

Recent advances ...

Implicit regularisation … 
weights are tied together ...

42/60

DNNs

Capacity
(model complexity)

E
rr

or



  

Implicit Regularisation in SGD ...

Recent advances ...

… is responsible for good 
generalisation of the DNNs.

42/60

Implicit regularisation … 
weights are tied together ...



  

Conclusion (Part II)
● Classic wisdom about generalisation is insufficient

● #Parameters does NOT represent model complexity

● Optimisation remains easy, even when learning is hard

● Explicit regularisation helps, incrementally NOT fundamentally

● Why do DNNs generalise well?

– Implicit regularisation in SGD and … 

Recent advances ... 43/60



  

Outlines (Part III)
● Information Bottleneck

 

● Over-parameterisation and Generalisation
 

● Interpretation/Visualisation of Filters/Activations

Recent advances ...



  

We will investigate ...
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● Seriousness of gradient vanishing in low layers [16]

● Linear separability in high layers [17]

Recent advances ...

MLP   CNN
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Seriousness of Gradient Vanishing

Recent advances ...

First Layer 

1 2 3 4 5

MLP

   

DNN

CNN

5

4

3

2
1

45/60

In light of gradient vanishing …
How optimal the first layer is?



  

Seriousness of Gradient Vanishing

Recent advances ...

DNNIn light of gradient vanishing …
How optimal the first layer is?

5

4

3

2

45/60

First Layer 

1 2 3 4 5

MLP

   

CNN

1



  

How to investigate it?

Recent advances ...

* Error or accuracy reflect DNN’s collective behaviour
 

* Layer-dependent metric is needed ... 

46/60

First Layer 

1 2 3 4 5

MLP

   

CNN



  

The proposed task ...
● Task: Phone recognition (TIMIT) using raw waveform

Recent advances ... 47/60

x

Y  Sil    hh ay w ey ih n f r iy w ey m iy n dh ix s ey m epi th ih ng sil

This is not strictly correct …
Y is the state-clusterd triphones.



  

The proposed task ...
● Task: Phone recognition (TIMIT) using raw 

waveform
● How: add noise to training data ...

Recent advances ...

BSF1
(1.2, 1.6 kHz)

BSF2
(1.8, 2.1 kHz)

White 
Noise

Noisy Signal
*

1.2 1.6 1.8 2.1 
. . .. . .

kHz

48/60



  

Gradient Vanishing Seriousness 
● Task: Phone recognition (TIMIT) using raw waveform

● How: add noise to training data

● Metric: Average Frequency Response (AFR)

Recent advances ...

h
1

h
2

h
C

.

.

.

DNN  Conv

. . .

h: impulse response
H: frequency response
C: #channels 

49/60



  

AFR Dynamics (1) 

Recent advances ...

Epoch 1

50/60

1.2 1.6 1.8 2.1 . . .. . .

[16]



  

AFR Dynamics (1) 

Recent advances ...

Epoch 1 Epoch 20
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1.2 1.6 1.8 2.1 . . .. . .

[16]

 . . .



  

AFR Dynamics (2) 

Recent advances ...

Epoch 1 Epoch 20

1.2 1.6 1.8 2.1 . . .. . .Using phone labels, the model finds the 
noisy sub-bands and filters them out.

51/60
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AFR Dynamics (2) 

Recent advances ...

Epoch 1 Epoch 20

1.2 1.6 1.8 2.1 . . .. . .Using phone labels, the model finds the 
noisy sub-bands and filters them out.

51/60

[16]Gradient vanishing is NOT a serious problem ...

 . . .



  

Effect of Activation Function

Recent advances ...

* … Sigmoid and Tanh … Noisy sub-bands successfully found ...
 

* Gradient vanishing is NOT a serious problem in a reasonable setup! 

52/60

[16]



  

We will investigate ...
● Seriousness of gradient vanishing in low layers [16]

● Linear separability in high layers [17]

Recent advances ...

MLPCNN
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Towards output layer ...
● DNN should ...

– Filter out irrelevant information

Recent advances ...

MLPCNN
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Towards output layer ...
● DNN should ...

– Filter out irrelevant information
– Enhance linear separability

● Softmax is a linear classifier 

Recent advances ...

MLPCNN

. . .
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Investigating the Linear Separability ...
● Task: A binary classification (Question F, ImageCLEF2015) 

● How: Dump activations → Dim. reduction to 2D (t-SNE, PCA, ...) → 

→ Monitor linear separability across layers/epochs

Recent advances ...

H2 H3 H4 Y
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Epoch: 1

Recent advances ...

t-SNE PCA

X CNN  …  H2 H3 H4 Y
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Epoch: 5

Recent advances ...

t-SNE PCA

x
X CNN  …  H2 H3 H4 Y
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Epoch: 10

Recent advances ...

t-SNE PCA

X CNN  …  H2 H3 H4 Y
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Epoch: 15

Recent advances ...

t-SNE PCA

X CNN  …  H2 H3 H4 Y
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Epoch: 20

Recent advances ...

t-SNE PCA

X CNN  …  H2 H3 H4 Y

59/60

[17] 



  

Conclusion (Part III)
● We studied/visualised the …

– Gradient vanishing seriousness 
– Linear separability across layers/epochs

● Providing interpretation/visualisation make the 
reviewer/readers happy :-), embed them into your 
work! 

Recent advances ... 60/60



  

That’s It!
● Thank you for Your Attention!
● Q&A

 

● References ↓ 

Recent advances ...



  

References (Part I)

Recent advances ...

[1] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks via information,” CoRR, 
vol. abs/1703.00810, 2017. 

[2] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in Proc. of the 37th Annual 
Allerton Conference on Communication, Control and Computing, 1999, pp. 368–377.

[3] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox, “On the 
information bottleneck theory of deep learning.” in ICLR, 2018. 

[4] I. Chelombiev, C. J. Houghton, and C. O’Donnell, “Adaptive estimators show information compression in 
deep neural networks,” in ICLR, 2019.

[5] J.-H. Jacobsen, A. W. M. Smeulders, and E. Oyallon, “i-RevNet:  Deep invertible networks,” in ICLR, 
2018.

[6] M. Noshad, Y. Zeng, and A. O. Hero, “Scalable mutual information estimation using dependencegraphs,” 
in ICASSP, 2019. 

[7] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed. Wiley-Interscience, 2006.

61/60



  

References (Part II)

Recent advances ...

[8] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning requires rethinking 
generalization,” In ICLR, 2017. 

[9] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning (still) requires rethinking 
generalization,” Commun. ACM, vol. 64, no. 3, p. 107–115, 2021. 

[10] C. Zhang, S. Bengio, M. Hardt, M. C. Mozer, and Y. Singer, “Identity crisis: Memorization and generalization under 
extreme overparameterization,” In ICLR, 2020. 

[11] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro, “Exploring generalization in deep learning,” In NIPS, 2017. 

[12] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fantastic generalization measures and where to find 
them,” In ICLR, 2020.

[13] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, “Identifying andattacking  the  saddle  point  
problem  in  high-dimensional  non-convex  optimization,”  in NIPS, 2014.

[14] S. Bhojanapalli, B. Neyshabur, and N. Srebro, “Global optimality of local search for low rankmatrix recovery,” in NIPS, 
2016. 

[15] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun, “The Loss Surfaces of Multilayer Networks,” in 
PMLR, 2015.

62/60



  

References – Part III

Recent advances ...

[16] E. Loweimi, P. Bell, and S. Renals, “On the robustness and training dynamics of raw waveform 
models,” in Proc. INTERSPEECH, 2020.

[17]  S.  Loveymi,  M.  H.  Dezfoulian,  and  M.  Mansoorizadeh,  “Automatic  generation  of  structured 
radiology reports for volumetric computed tomography images using question-specific deep feature 
extraction and learning,” in Journal of medical signals and sensors, 2016.

63/60


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

