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Kernel Methods for Pattern Recognition

● Advantages:
– Handle Non-linear data, Interpretable, learning guarantees

● Representer Theorem 
Regulariser
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Optimise for α 2/28
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– Hyper-cube Volume→ ∞
– Hyper-sphere Volume→ 0

– Proof in Appendix 1

● Linear separability ↑
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Kernel Trick: Instead of D (may D→∞) 
products/sums, simply use the kernel function 
K(x,y) to compute the inner product in H space.

RBF
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Kernel Methods do NOT Scale Well
● Training complexity

– Time: O(N2) <  < O(N3)

– Space: O(N2)

– One Hour Speech

● N = 360,000

● Kernel mat size = 230Mbit (16x40xN)

● Test Complexity

– O(N)

– #SVs increases linearly by N 
(Steinwart et al, 2008)
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● Kernel matrix approximation

– Nyström approximation

● Kernel function approximation

– Random Fourier Features
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Nyström Approximation

● Consider low-rank matrix decomposition, e.g. SVD: K = UΣVT 

● K must be formed explicitly, challenging when N → ∞

KN x N N x r

r x N

r << N
 ≈ 

#parameters: N x N #parameters: 2rN 8/28E. Loweimi
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Nyström Approximation

● Nyström Approximation → no need to form K explicitly

● Challenges: choosing m value and m landmark points
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Random Fourier Features – 
Approxmation

Monte Carlo
Method (MC)

Draw D ̂ iid 
samples from p(ω) 11/28
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Details in the Appendix A of the paper
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Kernels Associated PDFs 

● Kernel PDF = Inverse Fourier transform of K(x-y,0)

– Gaussian kernel → Normal(0d,σ-2Id) → thin-tailed 

– Laplacian kernel → Cauchy(0d,λ) → fat-tailed 
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Computational Gain

Kernel
Machine

Classifier 1

Random
Features

Linear
Machine

Classifier 2

Big Data

O(D̂)
O(N)

O(D)

D̂
A. Rahimi, B. Recht, “Random Features for Large-Scale Kernel Machines”, NIPS 2007

Training time
grows slowly

Error decays quickly

14/28



  

Acoustic Modelling Using Kernel 
Methods



  

Kernel Machine as a Classifier

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

14/28E. Loweimi



  

Kernel Machine as a Classifier

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

14/28E. Loweimi



  

Kernel Machine as a Classifier

14/28

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

E. Loweimi



  

Kernel Machine as a Classifier

14/28

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

E. Loweimi



  

Kernel Machine as a Classifier

14/28

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

S
O
F
T
M
A
X

E. Loweimi



  

Kernel Machine as a Classifier

14/28

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

S
O
F
T
M
A
X

E. Loweimi



  

Kernel Machines as a Shallow NN

Random Fixed Numbers

15/28

.

.

.

Feature
Mapping

OR

Random
Fourier

Features

x

S
O
F
T
M
A
X

E. Loweimi



  

Kernel Machines as a Shallow NN

● Objective function → Convex

● Optimisation → SGD

Random Fixed Numbers

15/28E. Loweimi



  

Kernel Machines as a Shallow NN

● Objective function → Convex

● Optimisation: SGD

● Kernel Machines are 
discriminative→ Posterior

– Likelihood?

 

Random Fixed Numbers

15/28E. Loweimi



  

Kernel Machines as a Shallow NN

● Objective function → Convex

● Optimisation: SGD

● Kernel Machines are 
discriminative→ Posterior

● Bayes’ rule + forced alignment→ 
scaled-likelihood

 

Random Fixed Numbers

15/28E. Loweimi



  

Kernel Machines as a Shallow NN

● Objective function → Convex

● Optimisation: SGD

● Kernel Machines are 
discriminative→ Posterior

● Bayes’ rule + forced alignment → 
scaled-likelihood

● Classes: context-dependent phonetic 
states

Random Fixed Numbers
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Kernel Machines as a Shallow NN

Random Fixed Numbers

 

Without Random Features and D >> d

        Cybenko        Representer 
        Theorem          Theorem≡
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Randomness in NNs

Rahimi and Recht “randomisation is […] 
cheaper than optimisation.”
  

Advances in Neural Information Processing Systems (2009)

● Examples
– FFNN → Perceptron

– RNN → Reservoir Computing

● Advantages

– Sparse high-dim feature 
space → better learning

– Easier/scalable optimisation
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Linear Bottlenecks 
● #parameters: D x C

– 104 x 103

Random Fixed Numbers
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Linear Bottlenecks 
● GOAL: Reducing #parameters (D x C ≥ 107)

● HOW: Low-rank matrix factorisation → ΘD X C ≈ UD x r Vr x C

● ADVANTAGE: Less parameters D x C → r(D+C)

● DISADVANTAGE: Less modelling power + non-convex optim.

– Success depends on weights correlation

– NOT useful for low layers

17/28T. Sainath et al, Low-rank matrix factorization for Deep Neural Network
 training with high-dimensional output targets, ICASSP 2013
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(Iterative) Random Feature Selection

  WDxC
l2

 

arg
sort

Single
Pass
SGD

Random
Features

.

.

19/28

Descending
argsort

l2-norm

ˆ

   
WDxCˆ

E. Loweimi



  

(Iterative) Random Feature Selection

   
WDxCˆ

  WDxC

arg
sort

Single
Pass
SGD

Random
Features

l2
 

.

.

19/28

ˆ̂

E. Loweimi



  

(Iterative) Random Feature Selection

   
WDxCˆ

  WDxC

arg
sort

Single
Pass
SGD

Random
Features

l2
 

.

.

19/28

ˆ

E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

20/28E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

● Fat tail → extreme events occur 

20/28E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

● Fat tail → extreme events occur 

. . .

. . . 20/28E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

● Fat tail → extreme events occur 

. . .

. . . 20/28
x xxxxxxxxxxx xxxxxx xx xx

x x x x xxxx

E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

● Fat tail → extreme events occur → Implicit sparsity

 

0
 

0 . . .
 

0

. . . 20/28
x xxxxxxxxxxx xxxxxx xx xx

 

0
  

0x x x

E. Loweimi



  

Sparse Gaussian Kernel
● Laplacian Kernel ↔Cauchy density → Fat tail

● Fat tail → extreme events occur → Implicit sparsity

● Explicitly impose sparsity

– Draw k samples from {1, 2, …, d}, set rest indices to zero

20/28
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CE as Early Stopping Criterion
● CE doesn’t perfectly correlate with TER 

– e.g. DNNs return better TER than 
kernel models but worse CE
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CE as Early Stopping Criterion
● CE doesn’t perfectly correlate with TER

– e.g. DNNs return better TER than kernel 
models but worse CE

● Better proxies for TER → better training

● One point to look at

– CE over-penalise very incorrect 
classification

– Example → Incorrect labels
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Experimental Setup
● Initialisation → Glorot and Bengio (2010)   

– Biases: zero, Weights: random uniform (nj: #nodes in layer j)

● DNN architecture: 4 hidden layers (#nodes: 1k→4k), tanh activation

● Trainig: SGD, mini-batch size: 250, learning rate annealing (halve it at the end of epoch if ∆CE{Heldout} < 1%)

● Each test set divided into training set, held-out (hyper-parameter adjustment), dev set (LMSF and WIP adjustment) 
and test set (no speaker overlap between sets)

● Decoding→ IBM’S Attila speech recognition toolkit

● Feature extraction: 

– 25 ms, 10 ms [TIMIT 5 ms], 13-dim PLP

– speaker-based MVN, splice 9 frames → LDA → 40D → STC transform 

– Final feature: 360 (4x2+1 x 40) [TIMIT: 440 5x2+1 x 40]

● #Classes: context-dependent HMM state-clustered quinphones

– Bengali and Cantonese = 1k, BN = 5k

– TIMIT = 147 = 3 x 49 ↔ beginning, middle and end of 49 phonemes 23/28E. Loweimi



  

Correlation with TER

24/28

Top-kCapped log lossERLL

E. Loweimi



  

Correlation with TER

24/28

Top-kCapped log lossERLL

Cross entropy and TER correlation 
→ metric parameter {β, λ, κ} → 0



  

Effects of Kernel Type and FS

-- M: size of the held-out set
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Effects of Kernel Type and FS

-- M: size of the held-out set

-- Gaussian-k > Lapalacian > Gaussian
-- FS helps
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Experimental Results (TER)

– FS: proposed feature selection
– Lap: Laplace kernel
– Collapsed: treat all silence states as one
Huang et al, Kernel methods match deep neural networks on TIMIT, 2014

TIMIT Huang et al
Lap+FS

26/28
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Relative Weight of Input Features in 
Random Matrix

LDA ranks its axes, like PCA

. . . . . .. . .
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Wrap-up
● Kernel machines

– ADVANTAGES: handles non-linear data, interpretable, learning guarantees 

– DISADVANTAGE: Do not scale well

– SOLUTIONS: Approximate kernel matrix or kernel function

● Novelties 
– Scale-up kernel methods to LVCSR level + comparable results with DNN

– Random feature selection (0.2 → 1.6 WER↓) 

– Frame-level metrics (0→ 0.7 WER↓)

– Linear bottleneck (0.9 → 2.4 WER↓)
28/28E. Loweimi



  

That's it!

● Thanks for your attention

● Q & A



  

Appendices
● Volume/Surface of Hyper-Sphere

● Dataset

● Kernel Results

● DNN Results

● Nyström vs Random Fourier Features

E. Loweimi



  

Volume of Hypersphere (n-ball)

dimension

RadiusVolume

Gamma function (factorial)
Growth faster than exponential

n → ∞
Red → 0

surface

2R
 

https://en.wikipedia.org/wiki/Volume_of_an_n-ball
29/28



  

Experimental Setup – Dataset/TER

● Performance Measure → Token Error Rate (TER)

– WER for Bengali and BN-50

– CER (character error rate) for Cantonese 

– PER (phone error rate) for TIMIT
30/28



  

Experimental Results -- Kernel

-- NT: No Trick                      -- R: ERLL
-- B: linear Bottleneck           -- BR: using B & R 31/28



  

Experimental Results -- DNN

  

– #hidden-layers: 4
– NT: No Trick
– B: linear Bottleneck 
– R: Entorpy Regularised Log Loss 
– BR: using both B & R 

#nodes 
hidden
layer

32/28



  

Nyström vs Random Fourier Features

● Kernel matrix approximation

– Nyström approximation
● Data-dependent

● Kernel function approximation

– Random Fourier Features
● Data independent

● Large eigengap (λmax - λmin) in kernel matrix → Difference is highlighted

– Nyström → lower generalisation error

– Random Fourier method requires many sample to discover subspace spanned by 
top eigenvectors

E. Loweimi
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