

Kernel Approximation Methods for Speech Recognition

Erfan Loweimi

Centre for Speech Technology Research (CSTR)

Kernel Approximation Methods for Speech Recognition

Avner May^{1†}, Alireza Bagheri Garakani^{2‡}, Zhiyun Lu^{2‡}, Dong Guo^{2‡}, Kuan Liu^{2‡}, Aurélien Bellet³, Linxi Fan⁴, Michael Collins¹^{*}, Daniel Hsu¹, Brian Kingsbury⁵, Michael Picheny⁵, Fei Sha²

¹Dept. of Computer Science, Columbia University, New York, NY 10027, USA {avnermay, mcollins, djhsu}@cs.columbia.edu, lf2422@columbia.edu

²Dept. of Computer Science, University of Southern California, Los Angeles, CA 90089, USA {bagherig, zhiyunlu, dongguo, kuanl, feisha}@usc.edu

³INRIA, 40 Avenue Halley, 59650 Villeneuve d'Ascq, France aurelien.bellet@inria.fr

⁴Dept. of Computer Science, Stanford University, Stanford, CA 94305, USA jimfan@cs.stanford.edu

⁵IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA {bedk, picheny}@us.ibm.com

[†][‡]: Contributed equally as the first and second co-authors, respectively

Kernel Approximation Methods for Speech Recognition

Avner May

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

A COMPARISON BETWEEN DEEP NEURAL NETS AND KERNEL ACOUSTIC MODELS FOR SPEECH RECOGNITION

Zhiyun $Lu^{1\dagger}$ Dong $Guo^{2\dagger}$ Alireza Bagheri Garakani^{2†} Kuan $Liu^{2\dagger}$

Avner May^{3‡} Aurélien Bellet^{4‡} Linxi Fan²

Michael Collins^{3*} Brian Kingsbury⁵ Michael Picheny⁵ Fei Sha¹

¹U. of California (Los Angeles) ²U. of Southern California ³Columbia U. ⁴Team Magnet, INRIA Lille - Nord Europe ⁵ IBM T. J. Watson Research Center (USA) [†] [‡]: contributed equally as the first and second co-authors, respectively

COMPACT KERNEL MODELS FOR ACOUSTIC MODELING VIA RANDOM FEATURE SELECTION

Avner May* 1

Michael Collins^{*1} Daniel Hsu^{*}

Brian Kingsbury[†]

* Department of Computer Science, Columbia University, New York, NY 10025, USA [†]IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

- Kernel Methods for Pattern Recognition
- How to Scale-up
- Application in ASR \rightarrow Acoustic Modelling
- Novelties
- Experimental Results
- Conclusion

Kernel Methods

- Advantages:
 - Handle Non-linear data, Interpretable, learning guarantees

- Advantages:
 - Handle Non-linear data, Interpretable, learning guarantees
- Representer Theorem

$$f^* = \underset{f}{argmin} \ \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n)) + \Phi(\|f\|^2)$$

- Advantages:
 - Handle Non-linear data, Interpretable, learning guarantees
- Representer Theorem

$$f^* = \underset{f}{argmin} \ \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n)) + \Phi(\|f\|^2)$$

$$f^*(x) = \sum_{n=1}^{N} \alpha_n \left. K(x, x_n) \right|_{K(x, x_n) = \langle \phi(x), \phi(x_n) \rangle}$$

LUWEIIII

- Advantages:
 - Handle Non-linear data, Interpretable, learning guarantees

2/28

- Advantages:
 - Handle Non-linear data, Interpretable, learning guarantees

- $\mathbb{R}^{D=3}$
 - Hyper-cube Volume = $(2r)^3$

- Hyper-sphere Volume =
$$\frac{4}{3}\pi r^3$$

- Hyper-cube Volume = $(2r)^3$
- Hyper-sphere Volume = $\frac{4}{3}\pi r^3$

- $\mathbb{R}^{D \to \infty}$
 - Hyper-cube Volume = ?
 - Hyper-sphere Volume = ?

- $\mathbb{R}^{D \to \infty}$
 - [–] Hyper-cube Volume $\rightarrow \infty$
 - Hyper-sphere Volume \rightarrow 0
 - Proof in Appendix 1

- $\mathbb{R}^{D \to \infty}$
 - [–] Hyper-cube Volume $\rightarrow \infty$
 - Hyper-sphere Volume \rightarrow 0
 - Proof in Appendix 1
- Linear separability 1

$$f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum_{n=1}^N \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n)$$

$$f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum_{n=1}^N \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n)$$

Gaussian Kernel (RBF) $K(x,y) = \langle \phi(x), \phi(y) \rangle = \sum_{k=0}^{\infty} \phi_k(x) \phi_k(y) = exp(||x-y||^2)$ $\phi_k(x) = exp(-x^2) \sqrt{\frac{2^k}{k!}} x^k, \quad k = 0, 1, ..., \rightarrow \infty$ E. Loweimi E. Loweimi

$$f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum_{n=1}^N \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n)$$

$$\begin{array}{l} \text{Gaussian Kernel (RBF)} \\ \hline K(x,y) = \langle \phi(x), \phi(y) \rangle = \sum_{k=0}^{\infty} \phi_k(x) \phi_k(y) = exp(\|x-y\|^2) \\ \phi_k(x) = exp(-x^2) \sqrt{\frac{2^k}{k!}} x^k, \quad k = 0, 1, ..., \rightarrow \infty \end{array}$$

$$\phi : \mathcal{X} \mapsto \mathcal{H}$$
$$x \in \mathbb{R}^{d < \infty}$$
$$\phi(x) \in \mathbb{R}^{D \to \infty}$$

Kernel Trick $\mathbb{R}^D(D \text{ may} \to \infty)$ Go to H Kernel Trick: Bypass the inner product NN $f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n) = \sum \alpha_n K(\mathbf{x}_i, \mathbf{x}_n)$ n=1n=1

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = \sum_{k=0}^{\infty} \phi_k(x) \phi_k(y) = exp(\frac{\|x-y\|^2}{2\sigma^2})$$

Kernel Trick $\mathbb{R}^D(D \text{ may} \to \infty)$ Go to H Kernel Trick: Bypass the inner product N $f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n) = \sum \alpha_n K(\mathbf{x}_i, \mathbf{x}_n)$ $n \equiv 1$ $n \equiv 1$

$$K(x,y) = \langle \phi(x), \phi(y) \rangle = \sum_{k=0}^{\infty} \phi_k(x) \phi_k(y) = exp(\frac{\|x-y\|^2}{2\sigma^2})$$

Kernel Trick: Instead of D (may $D \rightarrow \infty$) products/sums, simply use the kernel function K(x,y) to compute the inner product in H space.

Kernel Trick $\mathbb{R}^D(D \text{ may} \to \infty)$ Go to H Kernel Trick: Bypass the inner product N $f(\mathbf{x}_i) = W^T \phi(\mathbf{x}_i) = \sum \alpha_n \phi^T(\mathbf{x}_i) \phi(\mathbf{x}_n) = \sum \alpha_n K(\mathbf{x}_i, \mathbf{x}_n)$ n=1n=1

$$\phi: \mathcal{X} \mapsto \mathcal{H}$$
$$x \in \mathbb{R}^{d < \infty}$$
$$\phi(x) \in \mathbb{R}^{D \to \infty}$$

No need to visit the feature space (H)!

$$\phi : \mathcal{X} \to \mathcal{H}$$
$$f(x) = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$
$$K_{ij} = \phi^T(x_i) \ \phi(x_j)$$

$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$$

Kernel matrix 6/28

- Training complexity
 - Time: $O(N^2) < < O(N^3)$
 - Space: $O(N^2)$

$$\phi : \mathcal{X} \to \mathcal{H}$$
$$f(x) = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$
$$K_{ij} = \phi^T(x_i) \ \phi(x_j)$$
$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \end{bmatrix}$$

$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$$

Kernel matrix 6/28

- Training complexity
 - Time: $O(N^2) < < O(N^3)$
 - Space: $O(N^2)$
 - One Hour Speech
 - N = 360,000
 - Kernel mat size = 230Mbit (16x40xN)

$$\phi : \mathcal{X} \to \mathcal{H}$$
$$f(x) = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$
$$K_{ij} = \phi^T(x_i) \ \phi(x_j)$$

$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$$

Kernel matrix

6/28

E. Loweimi

- Training complexity
 - Time: $O(N^2) < < O(N^3)$
 - Space: $O(N^2)$
 - One Hour Speech
 - N = 360,000
 - Kernel mat size = 230Mbit (16x40xN)
- Test Complexity

$$\phi : \mathcal{X} \to \mathcal{H}$$
$$f(x) = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$
$$K_{ij} = \phi^T(x_i) \ \phi(x_j)$$

$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$$

Kernel matrix 6/28

E. Loweimi

- Training complexity
 - Time: $O(N^2) < < O(N^3)$
 - Space: O(*N*²)
 - One Hour Speech
 - N = 360,000
 - Kernel mat size = 230Mbit (16x40xN)
- Test Complexity
 - O(N)
 - #SVs increases linearly by N (Steinwart et al, 2008)

$$\phi : \mathcal{X} \to \mathcal{H}$$
$$f(x) = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$
$$K_{ij} = \phi^T(x_i) \ \phi(x_j)$$

$$\begin{bmatrix} K_{11} & \cdots & K_{1N} \\ \vdots & \ddots & \vdots \\ K_{N1} & \cdots & K_{NN} \end{bmatrix}$$

Kernel matrix 6/28

Scaling Up the Kernel Machines

How to Scale-up -- Kernel Approximation

- Kernel matrix approximation
- Kernel function approximation

How to Scale-up -- Kernel Approximation

Kernel <u>function</u> approximation

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$$
$$\approx \hat{\phi}^T(\mathbf{x}_i)\hat{\phi}(\mathbf{x}_j)$$

How to Scale-up -- Kernel Approximation

- Kernel matrix approximation
 - Nyström approximation

- Kernel function approximation
 - Random Fourier Features

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi^T(\mathbf{x}_i)\phi(\mathbf{x}_j)$$
$$\approx \hat{\phi}^T(\mathbf{x}_i)\hat{\phi}(\mathbf{x}_j)$$

Nyström Approximation

• Consider low-rank matrix decomposition, e.g. SVD: $K = U\Sigma V^{T}$

Nyström Approximation

- Consider low-rank matrix decomposition, e.g. SVD: $K = U\Sigma V^{T}$
- K must be formed explicitly, challenging when N $\rightarrow \infty$

- Nyström Approximation \rightarrow no need to form K explicitly
- ONLY save A and B!

$$m \ll N$$

#parameters: $N^2 \rightarrow mN$

- Nyström Approximation \rightarrow no need to form K explicitly
- ONLY save A and B!

 $C \approx B^T A^{-1} B$

 $\mathbf{K} = \mathbf{K}^{\mathsf{T}}$

- Nyström Approximation \rightarrow no need to form K explicitly
- ONLY save A and B!

 $C \approx B^T A^{-1} B$

 $m \geq r$

 $K = K^{T}$

- Nyström Approximation \rightarrow no need to form K explicitly
- Challenges: choosing *m* value and *m* landmark points

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
$$\approx \langle \hat{\phi}(\mathbf{x}_i), \hat{\phi}(\mathbf{x}_j) \rangle$$

$$\begin{cases} \phi : \mathbb{R}^d \to \mathbb{R}^D \\ \hat{\phi} : \mathbb{R}^d \to \mathbb{R}^{\hat{D}} \end{cases}, \ \hat{D} \ll D \end{cases}$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
$$\approx \langle \hat{\phi}(\mathbf{x}_i), \hat{\phi}(\mathbf{x}_j) \rangle$$

$$\begin{cases} \phi : \mathbb{R}^d \to \mathbb{R}^D \\ \hat{\phi} : \mathbb{R}^d \to \mathbb{R}^{\hat{D}} \end{cases}, \ \hat{D} \ll D \end{cases}$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
$$\approx \langle \hat{\phi}(\mathbf{x}_i), \hat{\phi}(\mathbf{x}_j) \rangle$$

$$\begin{cases} \phi : \mathbb{R}^d \to \mathbb{R}^D \\ \hat{\phi} : \mathbb{R}^d \to \mathbb{R}^{\hat{D}} \end{cases}, \ \hat{D} \ll D \end{cases}$$

Classifier
$$1 = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$

Classifier $2 = \hat{W}^T \hat{\phi}(x)$

Big Data

Random Features

$$K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
$$\approx \langle \hat{\phi}(\mathbf{x}_i), \hat{\phi}(\mathbf{x}_j) \rangle$$
$$\begin{cases} \phi : \mathbb{R}^d \to \mathbb{R}^D \\ \hat{\phi} : \mathbb{R}^d \to \mathbb{R}^{\hat{D}} \end{cases}, \ \hat{D} \ll D \end{cases}$$

GOAL: Find $\hat{\phi}$ such that Classifier $1 \equiv \text{Classifier} 2$

Classifier
$$1 = W^T \phi(x) = \sum_{n=1}^N \alpha_n \ K(x, x_n)$$

Classifier $2 = \hat{W}^T \hat{\phi}(x)$

Kernel Machine

Linear

E. Loweimi

Classifier 1

Classifier 2

- Bochner's Theorem:
 - A continuous shift-invariant kernel function $K(x,y)=K(x-y,0)=K(\delta)$

- Bochner's Theorem:
 - A continuous shift-invariant kernel function $K(x,y)=K(x-y,0)=K(\delta)$

$$K(x,y) = exp(-\frac{\|x-y\|^2}{2\sigma^2}) \to K(\delta) = exp(-\frac{\|\delta\|^2}{2\sigma^2})$$

- Bochner's Theorem:
 - A continuous shift-invariant kernel function $K(x,y)=K(x-y,0)=K(\delta)$
 - is positive-definite (satisfies Mercer's condition) iff

$$K(x,y) = exp(-\frac{\|x-y\|^2}{2\sigma^2}) \to K(\delta) = exp(-\frac{\|\delta\|^2}{2\sigma^2})$$

- Bochner's Theorem:
 - A continuous shift-invariant kernel function $K(x,y)=K(x-y,0)=K(\delta)$
 - is positive-definite (satisfies Mercer's condition) iff
 - $K(\delta)$ is the Fourier transform of a non-negative measure $k(\omega)$.

$$K(x,y) = exp(-\frac{\|x-y\|^2}{2\sigma^2}) \to K(\delta) = exp(-\frac{\|\delta\|^2}{2\sigma^2})$$

- Bochner's Theorem:
 - A continuous shift-invariant kernel function $K(x,y)=K(x-y,0)=K(\delta)$
 - is positive-definite (satisfies Mercer's condition) iff
 - $K(\delta)$ is the Fourier transform of a non-negative measure $k(\omega)$.

$$K(x,y) = exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right) \to K(\delta) = exp\left(-\frac{\|\delta\|^2}{2\sigma^2}\right)$$
$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} d\omega \Big|_{k(\omega) \ge 0}$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = Z \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = Z \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega$$

Without loss of generality

assume Z=1

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega = \mathbb{E}_{\omega} \left[e^{-j\delta^T \omega} \right]$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega = \mathbb{E}_{\omega} \left[e^{-j\delta^T \omega} \right]$$

$$\mathbf{K}(\delta) = \mathbb{E}_{\omega} \left[e^{-j\delta^{T}\omega} \right] \approx \frac{1}{\hat{D}} \sum_{i=1}^{\hat{D}} \left. e^{-j\delta^{T}\omega_{i}} \right|_{\omega_{i} \sim p(\omega)}$$

$$k(\omega) \ge 0 \Longrightarrow \frac{k(\omega)}{Z} = p(\omega)$$

$$K(\delta) = \int_{\mathbb{R}^d} k(\omega) e^{-j\delta^T \omega} \ d\omega = \int_{\mathbb{R}^d} p(\omega) \ e^{-j\delta^T \omega} \ d\omega = \mathbb{E}_{\omega} \left[e^{-j\delta^T \omega} \right]$$

$$\mathbf{K}(\delta) = \mathbb{E}_{\omega} \left[e^{-j\delta^{T}\omega} \right] \approx \frac{1}{\hat{D}} \sum_{i=1}^{\hat{D}} \left. e^{-j\delta^{T}\omega_{i}} \right|_{\substack{\omega_{i} \sim p(\omega) \\ \mathbf{M} \text{onte Carlo} \\ \text{Method (MC)}}} \int_{\mathbf{M} \text{orber Carlo}} \left. \frac{\mathsf{Draw D}_{\text{iid}}}{\mathsf{samples from } p(\omega)} \right|_{\substack{\omega_{i} \sim p(\omega) \\ \mathbf{M} \text{orber Carlo} \\ \mathbf{$$

Т

11/28

$$\mathbf{K}(\vec{x}, \vec{y}) = \mathbf{K}(\overbrace{\vec{x} - \vec{y}}^{\delta}, 0) \approx \frac{1}{\hat{D}} \sum_{i=1}^{\hat{D}} e^{-j(\vec{x} - \vec{y})^T \omega_i} \Big|_{\vec{\omega}_i \sim p(\vec{\omega})}$$

$$\mathbf{K}(\vec{x}, \vec{y}) = \mathbf{K}(\overbrace{\vec{x} - \vec{y}}^{\delta}, 0) \approx \frac{1}{\hat{D}} \sum_{i=1}^{\hat{D}} e^{-j(\vec{x} - \vec{y})^{T} \omega_{i}} \Big|_{\vec{\omega}_{i} \sim p(\vec{\omega})}$$

Turn it into an inner product
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) \approx \hat{\phi}^{T}(\mathbf{x}_{i})\hat{\phi}(\mathbf{x}_{j})$

 $\vec{\Omega} =$

$$\mathbf{K}(\vec{x}, \vec{y}) = \mathbf{K}(\overbrace{\vec{x} - \vec{y}}^{\delta}, 0) \approx \frac{1}{\hat{D}} \sum_{i=1}^{\hat{D}} e^{-j(\vec{x} - \vec{y})^{T} \omega_{i}} \Big|_{\vec{\omega}_{i} \sim p(\vec{\omega})}$$

$$\text{Turn it into an inner product}$$

$$\begin{pmatrix} \vec{\omega}_{1} \\ \vdots \\ \vec{\omega}_{m} \\ \vdots \\ \vec{\omega}_{\hat{D}} \end{pmatrix} \xrightarrow{\phi_{m}(\mathbf{x})} = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \xrightarrow{\phi(x)} \hat{\phi}(x) = \begin{bmatrix} \hat{\phi}_{1}(x) \\ \vdots \\ \hat{\phi}_{m}(x) \\ \vdots \\ \hat{\phi}_{\hat{D}}(x) \end{bmatrix}_{\substack{i=1 \\ i \neq i \neq i}} \hat{\phi}_{i}(x) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \xrightarrow{\phi(x)} \hat{\phi}(x) = \begin{bmatrix} \hat{\phi}_{1}(x) \\ \vdots \\ \hat{\phi}_{m}(x) \\ \vdots \\ \hat{\phi}_{\hat{D}}(x) \end{bmatrix}_{\substack{i=1 \\ i \neq i \neq i}} \hat{\phi}_{i}(x) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \xrightarrow{\phi(x)} \hat{\phi}(x) = \begin{bmatrix} \hat{\phi}_{1}(x) \\ \vdots \\ \hat{\phi}_{m}(x) \\ \vdots \\ \hat{\phi}_{\hat{D}}(x) \end{bmatrix}_{\substack{i=1 \\ i \neq i \neq i}} \hat{\phi}_{i}(x) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \xrightarrow{\phi(x)} \hat{\phi}(x) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \xrightarrow{\phi(x)} \hat{\phi}($$

Kernels Associated PDFs

• Kernel PDF = Inverse Fourier transform of K(x-y,0)

Kernels Associated PDFs

- Kernel PDF = Inverse Fourier transform of K(x-y,0)
 - Gaussian kernel \rightarrow Normal($O_d, \sigma^{-2}I_d$)
 - Laplacian kernel \rightarrow Cauchy(0_d, λ)

Kernels Associated PDFs

- Kernel PDF = Inverse Fourier transform of K(x-y,0)
 - Gaussian kernel \rightarrow Normal($O_d, \sigma^{-2}I_d$) \rightarrow thin-tailed
 - Laplacian kernel \rightarrow Cauchy(0_d, λ) \rightarrow fat-tailed

Computational Gain

Acoustic Modelling Using Kernel Methods

$$p(y = c|x) \propto exp(\theta_c^T \hat{\phi}(x))$$

$$p(y = c|x) = \frac{exp(-E(\theta_c))}{Z}$$

$$p(y = c|x) \propto exp(\theta_c^T \hat{\phi}(x))$$

$$p(y = c|x) = \frac{exp(\theta_c^T \hat{\phi}(x))}{\sum_{c'} exp(\theta_{c'}^T \hat{\phi}(x))}$$

$$x \rightarrow \begin{bmatrix} \text{Feature} \\ \text{Mapping} \\ \text{OR} \\ \text{Fourier} \\ \text{Features} \\ & \vdots \\ \text{Features} \\ & \theta_C^T \hat{\phi}(x) \\ & & \theta_C^T \hat{\phi}(x) \\ & & & \\ \end{bmatrix}$$

$$p(y = c|x) \propto exp(\theta_c^T \hat{\phi}(x))$$

$$p(y = c|x) = \frac{exp(\theta_c^T \hat{\phi}(x))}{\sum_{c'} exp(\theta_c^T \hat{\phi}(x))}$$

$$x = -\log(p(y|x; \Theta))$$

$$= -\log(p(y|x; \Theta))$$

$$= -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

$$x = -\Theta_y^T \hat{\phi}(x) + \log \sum_{c=1}^C exp(\Theta_c^T \hat{\phi}(x))$$

- Objective function \rightarrow Convex
- Optimisation \rightarrow SGD

- Objective function \rightarrow Convex
- Optimisation: SGD
- Kernel Machines are discriminative → Posterior
 - Likelihood?

- Objective function \rightarrow Convex
- Optimisation: SGD
- Kernel Machines are discriminative → Posterior
- Bayes' rule + forced alignment → scaled-likelihood

- Objective function → Convex
- Optimisation: SGD
- Kernel Machines are discriminative → Posterior
- Bayes' rule + forced alignment → scaled-likelihood
- Classes: context-dependent phonetic states

- Examples
 - FFNN → Perceptron
 - RNN \rightarrow Reservoir Computing

- Examples
 - FFNN → Perceptron
 - RNN → Reservoir Computing
- Advantages
 - Sparse high-dim feature
 space → better learning
 - Easier/scalable optimisation

- Examples
 - FFNN → Perceptron
 - RNN → Reservoir Computing
- Advantages
 - Sparse high-dim feature
 space → better learning
 - Easier/scalable optimisation

Rahimi and Recht "randomisation is [...] cheaper than optimisation."

Advances in Neural Information Processing Systems (2009)

- #parameters: D x C
 - $-10^4 \times 10^3$

• GOAL: Reducing #parameters ($D \times C \ge 10^7$)

- GOAL: Reducing #parameters ($D \times C \ge 10^7$)
- HOW: Low-rank matrix factorisation $\rightarrow \Theta_{D \times C} \approx U_{D \times r} V_{r \times C}$

- GOAL: Reducing #parameters ($D \times C \ge 10^7$)
- HOW: Low-rank matrix factorisation $\rightarrow \Theta_{D \times C} \approx U_{D \times r} V_{r \times C}$
- ADVANTAGE: Less parameters $D \times C \rightarrow r(D+C)$

- GOAL: Reducing #parameters ($D \times C \ge 10^7$)
- HOW: Low-rank matrix factorisation $\rightarrow \Theta_{D \times C} \approx U_{D \times r} V_{r \times C}$
- ADVANTAGE: Less parameters $D \times C \rightarrow r(D+C)$
- **DISADVANTAGE**: Less modelling power + non-convex optim.

- GOAL: Reducing #parameters ($D \times C \ge 10^7$)
- HOW: Low-rank matrix factorisation $\rightarrow \Theta_{D \times C} \approx U_{D \times r} V_{r \times C}$
- ADVANTAGE: Less parameters $D \times C \rightarrow r(D+C)$
- **DISADVANTAGE**: Less modelling power + non-convex optim.
 - Success depends on weights correlation
 - NOT useful for low layers

 $\vec{\Omega} =$

(Iterative) Random Feature Selection

Random Fourier feature is too random! How to draw/find better random samples/features?

$$\begin{array}{c} \vec{\omega}_{1} \\ \vdots \\ \vec{\omega}_{m} \\ \vdots \\ \vec{\omega}_{\hat{D}} \end{array} \end{array} \right] \qquad \begin{array}{c} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \approx \hat{\phi}^{T}(\mathbf{x}_{i}) \hat{\phi}(\mathbf{x}_{j}) \\ \rightarrow & \hat{\phi}_{m}(\mathbf{x}) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_{m}^{T}\mathbf{x} + b_{m}) \\ \vec{\omega}_{m} \sim p(\vec{\omega}) \qquad b \sim \mathcal{U}(0, 2\pi) \\ \hline \mathbf{E}. \text{ Loweimi} \end{array} \right) \qquad \begin{array}{c} \hat{\phi}_{0}(x) = \begin{bmatrix} \hat{\phi}_{1}(x) \\ \vdots \\ \hat{\phi}_{m}(x) \\ \vdots \\ \hat{\phi}_{\hat{D}}(x) \end{bmatrix}_{18/28}$$

19/28

19/28

19/28

• Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail

E. Loweimi

- Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail
- Fat tail \rightarrow extreme events occur

E. Loweimi

- Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail
- Fat tail \rightarrow extreme events occur

$$\hat{\phi}_m(\mathbf{x}) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_m^T \mathbf{x} + b_m)$$
$$\vec{\omega}$$
$$\vec{\tau}$$

- Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail
- Fat tail \rightarrow extreme events occur

- Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail
- Fat tail \rightarrow extreme events occur \rightarrow Implicit sparsity

$$\hat{\phi}_{m}(\mathbf{x}) = \sqrt{\frac{2}{\hat{D}}} \cos(\vec{\omega}_{m}^{T} \mathbf{x} + b_{m})$$
$$\vec{\omega} \quad 0 \mathbf{x} \mathbf{0} \mathbf{x} \mathbf{0} \cdots \mathbf{0} \mathbf{x} \mathbf{0}$$
$$\vec{x} \quad \Box \quad \Box \quad \Box \quad \Box$$
E. Loweimi

- Laplacian Kernel \leftrightarrow Cauchy density \rightarrow Fat tail
- Fat tail \rightarrow extreme events occur \rightarrow Implicit sparsity
- Explicitly impose sparsity
 - Draw k samples from {1, 2, ..., d}, set rest indices to zero

$$\hat{\phi}_m(\mathbf{x}) = \sqrt{\frac{2}{\hat{D}}} cos(\vec{\omega}_m^T \mathbf{x} + b_m)$$

 $\vec{\omega}$ $0 \times 0 \times 0 \cdots 0 \times 0$

 \vec{x}

Cauchy

Cross

Entropy

CE as Early Stopping Criterion

CE doesn't perfectly correlate with TER

e.g. DNNs return better TER than kernel models but worse CE

- CE doesn't perfectly correlate with TER
 - e.g. DNNs return better TER than kernel models but worse CE
- Better proxies for TER \rightarrow better training

- CE doesn't perfectly correlate with TER
 - e.g. DNNs return better TER than kernel models but worse CE
- Better proxies for TER \rightarrow better training
- One point to look at
 - CE over-penalise very incorrect classification

- CE doesn't perfectly correlate with TER
 - e.g. DNNs return better TER than kernel models but worse CE
- Better proxies for TER \rightarrow better training
- One point to look at
 - CE over-penalise very incorrect classification
 - Miss is more costly than False Alarm

- CE doesn't perfectly correlate with TER
 - e.g. DNNs return better TER than kernel models but worse CE
- Better proxies for TER \rightarrow better training
- One point to look at
 - CE over-penalise very incorrect classification
 - Example \rightarrow Incorrect labels

Proposed Early Stopping Criteria

E. Loweimi

Entropy Regularised Log Loss

 $ERLL = CE + \beta \ ENT$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{y=1}^{C} \left[\mathbb{I}(y = y_i) + \beta p(y|x_i) \right] \log(p(y|x_i))$$

Proposed Early Stopping Criteria

Entropy Regularised Log Loss

 $ERLL = CE + \beta \ ENT$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{y=1}^{C} \left[\mathbb{I}(y = y_i) + \beta p(y|x_i) \right] \log(p(y|x_i))$$

Avoids over-penalisation when $p(y|x_i) \rightarrow 0$

22/28

Proposed Early Stopping Criteria

E. Loweimi

Entropy Regularised Log Loss

 $ERLL = CE + \beta \ ENT$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{y=1}^{C} \left[\mathbb{I}(y = y_i) + \beta p(y|x_i) \right] \log(p(y|x_i))$$

Capped Log Loss =
$$-\frac{1}{N} \sum_{i=1}^{N} log(p(y_i|x_i) + \lambda)$$

Proposed Early Stopping Criteria

Entropy Regularised Log Loss

 $ERLL = CE + \beta \ ENT$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{y=1}^{C} \left[\mathbb{I}(y = y_i) + \beta p(y|x_i) \right] \log(p(y|x_i))$$

Capped Log Loss =
$$-\frac{1}{N} \sum_{i=1}^{N} log(p(y_i|x_i) + \lambda)$$

Top-k Log Loss =
$$-\frac{1}{k} \sum_{i=1}^{k} log(p(y_i | \mathbf{x}_i))$$

E. Loweimi

22/28

Experimental Results

Experimental Setup

- Initialisation \rightarrow Glorot and Bengio (2010)
 - Biases: zero, Weights: random uniform (*n_j*: #nodes in layer *j*)
- DNN architecture: 4 hidden layers (#nodes: $1k \rightarrow 4k$), tanh activation
- Trainig: SGD, mini-batch size: 250, learning rate annealing (halve it at the end of epoch if ΔCE {Heldout} < 1%)
- Each test set divided into training set, held-out (hyper-parameter adjustment), dev set (LMSF and WIP adjustment) and test set (no speaker overlap between sets)
- Decoding \rightarrow IBM'S Attila speech recognition toolkit
- Feature extraction:
 - 25 ms, 10 ms [TIMIT 5 ms], 13-dim PLP
 - speaker-based MVN, splice 9 frames \rightarrow LDA \rightarrow 40D \rightarrow STC transform
 - Final feature: 360 (4x2+1 x 40) [TIMIT: 440 5x2+1 x 40]
- #Classes: context-dependent HMM state-clustered quinphones
 - Bengali and Cantonese = 1k, BN = 5k
 - TIMIT = 147 = 3 x 49 ↔ beginning, middle an ∉en_doord@mihonemes

23/28

Correlation with TER

E. Loweimi

Correlation with TER

Cross entropy and TER correlation \rightarrow metric parameter { β , λ , κ } \rightarrow 0

Effects of Kernel Type and FS

Effects of Kernel Type and FS

Experimental Results (TER)

Dataset	Method	Perplexity	Collapsed	TER
Cant.	DNN	6.127	4.316	67.3%
	Lap+FS	5.997	4.176	68.6%
Beng.	DNN	3.616	3.256	71.3%
	Lap+FS	3.678	3.233	72.7%

		Test TER (DNN)	Test TER (Kernel)		
TIMIT	Huang et al	20.5	21.3		
	Lap+FS	20.5	20.4		

- FS: proposed feature selection
- Lap: Laplace kernel
- Collapsed: treat all silence states as one

Huang et al, Kernel methods match deep neural networks on TIMIT, 2014 26/28

$$R_i = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_i \sum_j |\Theta_{FS}[i,j]|}$$

$$R_{i} = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_{i} \sum_{j} |\Theta_{FS}[i,j]|}$$

$$R_{i} = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_{i} \sum_{j} |\Theta_{FS}[i,j]|}$$

E. Loweimi

$$R_i = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_i \sum_j |\Theta_{FS}[i,j]|}$$

E. Loweimi

$$R_i = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_i \sum_j |\Theta_{FS}[i,j]|}$$

27/28

$$R_i = \frac{\sum_{j=1}^{D} |\Theta_{FS}[i,j]|}{\sum_i \sum_j |\Theta_{FS}[i,j]|}$$

27/28

LDA **ranks** its axes, like PCA

Wrap-up

- Kernel machines
 - ADVANTAGES: handles non-linear data, interpretable, learning guarantees
 - DISADVANTAGE: Do not scale well
 - SOLUTIONS: Approximate kernel matrix or kernel function
- Novelties
 - Scale-up kernel methods to LVCSR level + comparable results with DNN
 - ⁻ Random feature selection (0.2 \rightarrow 1.6 WER \downarrow)
 - [−] Frame-level metrics (0 \rightarrow 0.7 WER \downarrow)
 - − Linear bottleneck (0.9 \rightarrow 2.4 WER↓)

That's it!

- Thanks for your attention
- Q & A

Appendices

- Volume/Surface of Hyper-Sphere
- Dataset
- Kernel Results
- DNN Results
- Nyström vs Random Fourier Features

Volume of Hypersphere (n-ball)

Experimental Setup – Dataset/TER

Dataset	Train	Heldout	Dev	Test	# Features	# Classes
Beng.	21 hr (7.7M)	2.8 hr (1.0M)	20 hr (7.1M)	5 hr (1.7M)	360	1000
BN-50	45 hr (16M)	5 hr (1.8M)	2 hr (0.7M)	2.5 hr (0.9M)	360	5000
Cant.	21 hr (7.5M)	2.5 hr (0.9M)	20 hr (7.2M)	5 hr (1.8M)	360	1000
TIMIT	3.2 hr (2.3M)	0.3 hr (0.2M)	0.15 hr (0.1M)	0.15 hr (0.1M)	440	147

- Performance Measure \rightarrow Token Error Rate (TER)
 - WER for Bengali and BN-50
 - CER (character error rate) for Cantonese
 - PER (phone error rate) for TIMIT

Experimental Results -- Kernel

	Laplacian				Gaussian				Sparse Gaussian			
	NT	В	R	BR	NT	В	R	BR	NT	B	R	BR
Beng.	74.5	72.1	74.5	71.4	72.6	72.0	72.6	71.8	73.0	71.5	73.0	70.9
+FS	72.9	71.1	72.8	70.4	74.1	71.4	74.2	70.3	72.9	71.2	72.8	70.7
BN-50	N/A	17.9	N/A	17.7	N/A	17.3	N/A	17.1	N/A	17.3	N/A	17.0
+FS	N/A	17.1	N/A	16.7	N/A	17.5	N/A	17.0	N/A	17.1	N/A	16.7
Cant.	69.9	68.2	69.2	67.4	70.2	67.6	70.0	67.1	68.6	67.5	68.1	67.1
+FS	68.4	67.5	68.5	66.7	69.9	67.7	69.8	66.9	68.6	67.4	68.5	66.8
TIMIT	20.6	19.2	20.4	18.9	19.8	18.9	19.6	18.6	19.9	18.8	19.6	18.4
+FS	19.5	18.6	19.3	18.4	19.5	18.6	19.4	18.4	19.3	18.4	19.1	18.2

-- NT: No Trick -- B: linear Bottleneck -- R: ERLL

- ottleneck -- BR
- -- BR: using B & R

Experimental Results -- DNN

#nodes _	▶ 1000				2000				4000			
hidden laver	NT	В	R	BR	NT	В	R	BR	NT	В	R	BR
Beng.	72.3	71.6	71.7	70.9	71.5	71.1	70.7	70.3	71.1	70.6	70.5	70.2
BN-50	18.0	17.3	17.8	17.1	17.4	16.7	17.1	16.4	16.8	16.7	16.7	16.5
Cant.	68.4	68.1	67.9	67.5	67.7	67.7	67.2	67.1	67.7	67.1	67.2	67.2
TIMIT	19.5	19.3	19.4	19.2	19.0	18.9	19.2	19.2	18.6	18.6	18.7	18.9

- #hidden-layers: 4
- NT: No Trick
- B: linear Bottleneck
- R: Entorpy Regularised Log Loss
- BR: using both B & R

Nyström vs Random Fourier Features

- Kernel matrix approximation
 - Nyström approximation
 - Data-dependent

- Kernel function approximation
 - Random Fourier Features
 - Data independent

- Large eigengap (λ_{max} λ_{min}) in kernel matrix \rightarrow Difference is highlighted
 - Nyström \rightarrow lower generalisation error
 - Random Fourier method requires many sample to discover subspace spanned by top eigenvectors

