On The Information Bottleneck Theory of Deep Learning

Erfan Loweimi

Centre for Speech Technology Research (CSTR)

Ravid Schwartz-Ziv
Edmond and Lilly Safra Center for Brain Sciences
The Hebrew University of Jerusalem
Jerusalem, 91904, Israel
Naftali Tishby*
School of Engineering and Computer Science
and Edmond and Lilly Safra Center for Brain Sciences
The Hebrew University of Jerusalem
Jerusalem, 91904, Israel

Editor: ICRI-CI

Abstract

Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work Tishby and Zaslavsky (2015)] proposed to analyze DNNs in the Information Plane; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer

Deep Learning and the Information Bottleneck Principle

Naftali Tishby ${ }^{1,2}$

Noga Zaslavsky ${ }^{1}$

Abstract-Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by output variabormation between the layers and the input and the optimal information theoretic limits of the DNN and
Dander. Using this representation we can calcule obtain finite sample generalization bounds. The advantage of getting closer to the theoretical limit is quantifiable both by the generalization bound and by the network's simplicity. We argue that both the optimal architecture, number of layers and features/connections at each layer, are related to the bifurcation points of the information bottleneck tradeoff, namely, relevant
compression of the input layer with respect to the output compression of the input layer with respect to the output
layer. The hierarchical representations at the layered network layer. The hierarchical representations at the layered network
naturally correspond to the structural phase transitions along naturally correspond to the structural phase transitions along to new optimality bounds and deep learning algorithms.
output. The information theoretic interpretation of minimal sufficient statistics [5] suggests a principled way of doing that: find a maximally compressed mapping of the input variable that preserves as much as possible the information on the output variable. This is precisely the goal of the Information Bottleneck (IB) method [6]
Several interesting issues arise when applying this principle to DNNs. First, the layered structure of the network generates a successive Markov chain of intermediate repre sentations, which together form the (approximate) sufficient statistics. This is closely related to successive refinement of information in Rate Distortion Theory [7]. Each layer in the network can now be quantified by the amount of information it retains on the input variable, on the (desired) output vari-

ELSC

The Edmond \& Lily Safra Center for Brain Sciences

ICRI-CI
the hebrew university OF JERUSALEM

Professor Naftali Tishby

Noga
Zaslavsky

Ravid Schwartz-Ziv
Edmond and Lilly Safra Center for Brain Sciences The Hebrew University of Jerusalem
Jerusalem, 91904, Israel
Naftali Tishby*
School of Engineering and Computer Science
and Edmond and Lilly Safra Center for Brain Sciences
The Hebrew University of Jerusalem
Jerusalem, 91904, Israel

Editor: ICRI-CI
Opening the Black Box of Deep Neural Networks via Information
https://arxiv.org) cs
by R Shwartz-Ziv - 2017
Cited by 183 - Related articles
2 Mar 2017 - This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is .

Deep Learning and the Information Bottleneck Principle

$$
\text { Naftali Tishby }{ }^{1,2}
$$

$$
\text { Noga Zaslavsky }{ }^{1}
$$

Abstract-Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by the mutual information between the layers and the input and output variables. Using this representation we can calculate
output. The information theoretic interpretation of minimal sufficient statistics [5] suggests a principled way of doing hat: find a maximally comper aping of the input that: find a maximally compressed mapping of the input variable that preserves as much as possible the information

Deep Learning and the Information Bottleneck Principle
https://arxiv.org > cs
by N Tishby - 2015 Cited by 143 - Related articles
9 Mar 2015 - Deep Learning and the Information Bottleneck Principle. Deep Neural Networks (DNNs) are analyzed via the theoretical framework of the information bottleneck (IB) principle. We first show that any DNN can be quantified by the mutual information between the layers and the input and output variables.

19, Nov. , 2018

The Edmond \& Lily Safra Center for Brain Sciences

ICRI-CI

4
THE HEBREW UNIVERSITY OF JERUSALEM

Professor Naftali Tishby

Noga Zaslavsky

Ravid
Schwartz-Ziv

The Edmond \& Lily Safra Center for Brain Sciences

education

NEWS \& EVENTS
ABOUT ELSC

New Theory Cracks Open the Black Box of Deep Learning
New Theory Cracks Open the Black Box of Deep Learning

ELSC VIDEOS

Quantamagazine

New Theory Cracks Open the Black Box of Deep Learning

A new idea called the "information bottleneck" is helping to explain the puzzling success of today's artificial-intelligence algorithms - and might also explain how human brains learn

Natalie Wolchover
Senior Writer

Even as machines known as "deep neural networks" have learned to converse, drive cars, beat video games and Go champions, dream, paint pictures and help make scientific discoveries, they have also confounded their Go champions, dream, paint pictures and help make scientific discoveries, they have also confounded their
human creators, who never expected so-called "deep-learning" algorithms to work so well. No underlying principle has guided the design of these learning systems, other than vague inspiration drawn from the architecture of the brain (and no one really understands how that operates either).

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Other Views
- Conclusions

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Criticisms
- Conclusions
- Why DNNs work/generalise well
- Interpretability/understanding
- Why DNNs work/generalise well
- Interpretability/understanding

- Why DNNs work/generalise well
- Interpretability/understanding

DNNs

- Why DNNs work/generalise well
- Interpretability/understanding

Understanding deep learning Requires reTHINKING GENERALIZATION

Optimal Capacity

Chiyuan Zhang ${ }^{*}$
Massachusetts Institute of Technology chiyuan@mit.edu

Benjamin Recht ${ }^{\dagger}$

University of California, Berkeley
brecht@berkeley.edu

Samy Bengio
$\underset{\text { Google Brain }}{\text { Samy Bengio }}$ bengio@google.com

Abstract

Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small difference between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family, or to the regularization techniques used during training.
Through extensive systematic experiments, we show how these traditional approaches fail to explain why large neural networks generalize well in practice. Specifically, our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a ran-
E. Loweimi

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Criticisms
- Conclusions

Information Theory Review

- Information
- (Conditional, Joint) Entropy
- KL Divergence
- Mutual Information

```
Robert M.Gray
```

Entropy and Information Theory
Second Edition

David J.C. MacKay
Information Theory, Inference, and Learning Algorithms

Information Theory

Reprinted with corrections from The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

Introduction
THE recent development of various methods of modulation such as PCM and PPM which exchange 1 bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{1}$ and Hartley 2 on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

Information Theory

Reprinted with corrections from The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

Introduction
THE recent development of various methods of modulation such as PCM and PPM which exchange 1 bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{1}$ and $H^{1}{ }^{2}+{ }^{2}{ }^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

1949

E. Loweimi

Defining Information - Qualitatively

- Fundamental properties of information (I)

Defining Information - Qualitatively

- Fundamental properties of information (I)
- $I(p)$ is monotonically decreasing in probability (p)

Defining Information - Qualitatively

- Fundamental properties of information (I)
- $I(p)$ is monotonically decreasing in probability (p)

Information \equiv Surprise
Informaiton \equiv Uncertainty

Defining Information - Qualitatively

- Fundamental properties of information (I)

$$
\begin{aligned}
& -I(p) \text { is monotonically decreasing in probability }(p) \\
& -I(p) \geq 0 \\
& -I(p=1)=0
\end{aligned}
$$

Defining Information - Qualitatively

- Fundamental properties of information (I)

$$
\begin{aligned}
& \text { - } I(p) \text { is monotonically decreasing in probability }(p) \\
& -I(p) \geq 0 \\
& -I(p=1)=0 \\
& -I\left(X_{1}, X_{2}\right)=I\left(X_{1}\right)+I\left(X_{2}\right) \leftrightarrow X_{1} \Perp X_{2}
\end{aligned}
$$

Independent

Defining Information - Quantitatively

- Information 三 Average surprise/uncertainty

$$
H(X)=\mathbb{E}\left[\log \frac{1}{P(X)}\right]=-\sum_{x \in \mathcal{X}} P\left(x_{i}\right) \log _{b} P\left(x_{i}\right)
$$

Defining Information - Quantitatively

- Information 三 Average surprise/uncertainty
$H(X)=\mathbb{E}\left[\log \frac{1}{P(X)}\right]=-\sum_{x \in \mathcal{X}} P\left(x_{i}\right) \log _{b} P\left(x_{i}\right)$

History of Entropy

R. Clausius

$+m$

$$
d S=\frac{d Q}{T} \quad S=k_{B} \log W \quad S=-k_{B} \sum_{i} p_{i} \log p_{i}
$$

JW Gibbs

1876
C. Shannon

$$
H(X)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

1948

Conditional Entropy

E. Loweimi

Conditional Entropy

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}) \rightarrow$ Remaining uncertainty in Y , when X is known

Conditional Entropy

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}) \rightarrow$ Remaining uncertainty in Y , when X is known

$$
\begin{aligned}
H\left(Y \mid X=x_{i}\right) & =\mathbb{E}\left[\mathbb{I}(Y) \mid X=x_{i}\right] \\
& =-\sum_{y \in \mathcal{Y}} P\left(y \mid x_{i}\right) \log P\left(y \mid x_{i}\right) \\
H(Y \mid X)=- & \sum_{x_{i} \in \mathcal{X}} p\left(x_{i}\right) H\left(Y \mid X=x_{i}\right)
\end{aligned}
$$

Conditional Entropy

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}) \rightarrow$ Remaining uncertainty in Y , when X is known

$$
H(Y) \geq H(Y \mid X) \geq 0
$$

Conditional Entropy

- $\mathrm{H}(\mathrm{Y} \mid \mathrm{X}) \rightarrow$ Remaining uncertainty in Y , when X is known

Joint Entropy

Joint Entropy

- $\mathrm{H}(\mathrm{X}, \mathrm{Y}) \rightarrow$ Uncertainty associated with a set of Variables

Joint Entropy

- $\mathrm{H}(\mathrm{X}, \mathrm{Y}) \rightarrow$ Uncertainty associated with a set of Variables

$$
H(X, Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y) \log P(x, y)
$$

Joint Entropy

- $\mathrm{H}(\mathrm{X}, \mathrm{Y}) \rightarrow$ Uncertainty associated with a set of Variables

$$
\begin{aligned}
H(X, Y) & =H(Y \mid X)+H(X) \\
& =H(X \mid Y)+H(Y)
\end{aligned}
$$

Joint Entropy

- $\mathrm{H}(\mathrm{X}, \mathrm{Y}) \rightarrow$ Uncertainty associated with a set of Variables

$$
\begin{aligned}
H(X, Y) & =H(Y \mid X)+H(X) \\
& =H(X \mid Y)+H(Y)
\end{aligned}
$$

$H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=-\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \log P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \mathbf{H}(\mathrm{X}, \mathrm{Y})$

Kullback-Leibler Divergence (KLD)

$$
D_{K L}(P \| Q)=-\sum_{i} P(i) \log \frac{Q(i)}{P(i)}=H(P, Q)-H(P)
$$

Cross
Entropy

Kullback-Leibler Divergence (KLD)

$$
D_{K L}(P \| Q)=-\sum_{i} P(i) \log \frac{Q(i)}{P(i)}=H(P, Q)-H(P)
$$

Interpretation:

> - Distance measure (P: ref; Q: est)
> - Information gain (P: posterior; Q: prior)

Kullback-Leibler Divergence (KLD)

$$
D_{K L}(P \| Q)=-\sum_{i} P(i) \log \frac{Q(i)}{P(i)}=H(P, Q)-H(P)
$$

Properties

$$
\begin{aligned}
& D_{K L}(P \| Q) \geq 0 \quad \text { Gibbs Inequality } \\
& D_{K L}(P \| Q) \neq D_{K L}(Q \| P) \quad \text { Asymmetric }
\end{aligned}
$$

Mutual Information (MI)

Mutual Information

- Information X gives about Y

Mutual Information

- Information X gives about Y , or vice verse

$$
I(X ; Y)=I(Y ; X)
$$

Mutual Information

- Information X gives about Y , or vice verse
- More general form of correlation

Mutual Information

- Information X gives about Y, or vice verse

$$
I(X ; Y)=D_{K L}(P(X, Y) \| P(X) P(Y))
$$

Mutual Information

- Information X gives about Y, or vice verse

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(X, Y) \| P(X) P(Y)) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X)
\end{aligned}
$$

Mutual Information

- Information X gives about Y, or vice verse

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(X, Y) \| P(X) P(Y)) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X, Y)-H(X \mid Y)-H(Y \mid X)
\end{aligned}
$$

Mutual Information - Properties

- Data Processing Inequality (DPI)
- For Markov Chain:

$$
\begin{gathered}
\mathrm{X} \rightarrow \mathrm{~T} 1 \rightarrow \mathrm{~T} 2 \rightarrow \mathrm{~T} 3 \\
\mathrm{I}(\mathrm{X} ; \mathrm{T} 1) \geq \mathrm{I}(\mathrm{X} ; \mathrm{T} 2) \geq \mathrm{I}(\mathrm{X} ; \mathrm{T} 3)
\end{gathered}
$$

Mutual Information - Properties

- Data Processing Inequality (DPI)
- For Markov Chain:

$$
\begin{gathered}
\mathrm{X} \rightarrow \mathrm{~T} 1 \rightarrow \mathrm{~T} 2 \rightarrow \mathrm{~T} 3 \\
\mathrm{I}(\mathrm{X} ; \mathrm{T} 1) \geq \mathrm{I}(\mathrm{X} ; \mathrm{T} 2) \geq \mathrm{I}(\mathrm{X} ; \mathrm{T} 3)
\end{gathered}
$$

- Transformation Invariance
- For invertible functions f and g

$$
I(X ; Y)=I(f(X) ; g(Y))
$$

Mutual Information - Estimation

- Estimation (tricky, specially in high-dim space)
- Ensemble Dependence Graph (Noshad 2018)
- Kernel-based (Kolchinsky 2017)
- K-NN-based (Kraskov 2004)
- ...

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Criticisms
- Conclusions

Information Bottleneck

- Motivation
- Definition

The Information Bottleneck Method

Naftali Tishby

The Hebrew University
Jerusalem 91904, Israel
tishby@cs.huji.ac.il

Fernando C. Pereira AT\&T Labs - Research Florham Park, NJ 07932 pereira@research.att.com

William Bialek
NEC Research Institute
Princeton, NJ 08540
bialek@research.nj.nec.com

Abstrac

We define the relevant information in a signal $x \in X$ as being the information that this signal provides about another signal $y \in Y$. Examples include the information that face images provide about the names of the people portrayed, or the information that speech sounds provide about the words spoken. Understanding the signal x requires more than just predicting y, it also requires specifying which features of X play a role in the prediction. We formalize the problem as that of finding a short code for X that preserves the maximum information about Y. That is, we squeeze the information that X provides about Y through a 'bottleneck' formed by a limited set of codewords \tilde{X}. This constrained optimization problem can be seen as a generalization of rate distortion theory in which the distortion measure $d(x, \tilde{x})$ emerges from the joint statistics of X and Y. The approach yields an exact set of self-consistent equations for the coding rules $X \rightarrow X$ and $X \rightarrow Y$. Solutions to these equations can be found by a convergent re-estimation method that generalizes the Blahut-Arimoto algorithm. Our variational principle provides a surprisingly rich framework for discussing a variety of problems in signal processing and learning, as will be described in detail elsewhere.

Rate-Distortion Theory

- GOAL:
- Find subject to: \quad Distortion $\leq \mathrm{D}_{\text {Max }}$

Rate-Distortion Theory

- GOAL:
- Find subject to: \quad Distortion $\leq \mathrm{D}_{\text {Max }}$

Trade-off: Rate vs Distortion
Minimal Rate

Rate-Distortion Theory

- Distortion Measure
- Purely Mathematical
- Relevant/Irrelevant info
- Perceptual
- Side-information (Wyner 1975)

Information Bottleneck (IB)

- Idea

$$
X \leadsto \stackrel{p(x, y)}{\longrightarrow} \rightarrow Y
$$

- Shannon Information + Learning

X: observation
Y: variable of interest
T : representation of X

Information Bottleneck (IB)

- How
- Compress X into T subject to ...
- Maintain relevant info about Y

$q(t \mid x)$

X: observation
Y: variable of interest
T : representation of X

Information Bottleneck (IB) - Interpretation

- Statistics
- Generalised minimal sufficient statistics for Y
- $Y \Perp X \mid T<=>I(X ; Y)=I(T ; Y)$

X: observation
Y : variable of interest
T : representation of X

Information Bottleneck (IB) - Interpretation

- Statistics
- Generalised minimal sufficient statistics for Y
- $Y \Perp X|T \ll|(X ; Y)=I(T ; Y)$

$q(t \mid x)$

- Machine Learning
- Kind of clustering or VQ

X: observation

Y : variable of interest
T : representation of X

IB - Objective Function

$$
\begin{array}{cl}
\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\} & \\
& \\
\text { Lagrange } & \\
\text { multiplier } & \\
& \mathrm{X}: \text { observation } \\
& \mathrm{Y}: \text { variable of interest } \\
& \mathrm{T}: \text { representation of } \mathrm{X}
\end{array}
$$

IB - Objective Function

Minimality/ Compression/ Complexity	Fidelity/ Sufficiency/ Accuracy
$\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}$	
Lagrange	
multiplier	

IB - Objective Function

Minimality/ Compression/ Complexity	Fidelity/ Sufficiency/ Accuracy
$\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}$	

IB - Objective Function

$$
\begin{array}{cc}
\begin{array}{c}
\text { Minimality/ } \\
\text { Compression/ } \\
\text { Complexity }
\end{array} & \begin{array}{c}
\text { Fidelity/ } \\
\text { Sufficiency/ } \\
\text { Accuracy }
\end{array} \\
\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}
\end{array}
$$

X: observation
Y: variable of interest
T : representation of X
$-\mathrm{I}(\mathrm{T} ; \mathrm{X}) \leftrightarrow$ as LOW as possible
$-I(T ; Y) \leftrightarrow$ as HIGH as possible

E. Loweimi

IB - Objective Function

X: observation
Y: variable of interest
T : representation of X

Accuracy-Compression Tradeoff

Accuracy-Compression Tradeoff

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Criticisms
- Conclusions

Opening the Black Box of DNNs via Information Bottleneck

NN as a Markov Chain

Markov Chain : $Y \leftrightarrow X \rightarrow T \rightarrow \hat{Y}$
Data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim p(x, y)$
E. Loweimi

NN as a Markov Chain

- Each layer characterised by
- Encoder
- Decoder

Markov Chain : $Y \leftrightarrow X \rightarrow T \rightarrow \hat{Y}$
Data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim p(x, y)$

NN as a Markov Chain

- Each layer characterised by
- Encoder
- Decoder
- Across layers, complexity shifts from De to En

Markov Chain : $Y \leftrightarrow X \rightarrow T \rightarrow \hat{Y}$
Data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim p(x, y)$
$14 / 33$

NN as a Markov Chain

- Each layer characterised by
- Encoder
- Decoder
- Across layers, complexity shifts from De to En
- GOAL:
- Successive Refinement of relevant information
E. Loweimi

Markov Chain : $Y \leftrightarrow X \rightarrow T \rightarrow \hat{Y}$
Data: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} \sim p(x, y)$
$14 / 33$

Successive Refinement of Relevant Info

NN as a Markov Chain

- Ideally
- Compression: $I\left(X ; T_{k}\right) \downarrow$
- Accuracy: $\mathrm{I}\left(\mathrm{Y} ; \mathrm{T}_{\mathrm{k}}\right) \uparrow$

NN as a Markov Chain

- Theorem ($\mathrm{T}_{\mathrm{k} \text { : last hidden layer) }}$
- $I\left(X ; T_{k}\right) \leftrightarrow$ sample complexity
- $\mathrm{I}\left(\mathrm{Y} ; \mathrm{T}_{\mathrm{k}}\right) \leftrightarrow$ generalisation error

$$
\text { E. Loweimi } I(X ; Y) \geq I\left(T_{i} ; Y\right) \geq I\left(T_{i+1} ; Y\right) \geq \cdots_{15 / 33}
$$

Information Plane

Information Plane

- GOAL
- Study the dynamics of learning

$$
\begin{gathered}
I(X ; T) \\
I_{X}=I(X ; T) \\
I_{Y}=I(Y ; T)
\end{gathered}
$$

Information Plane

- GOAL
- Study the dynamics of learning
- How
- Estimate I_{X} \& I_{Y} for all layers, all epochs

	$I(X ; T)$
I_{X}	$=I(X ; T)$
I_{Y}	$=I(Y ; T)$

E. Loweimi

$$
\begin{aligned}
& I_{X}=I(X ; T) \\
& I_{Y}=I(Y ; T)
\end{aligned}
$$

16/33

Network Architecture

- Fully-connected FFNN
- Training data:
- 4096 samples
- Batch size: 64
- 10k epochs
- 50 initialisations

Mutual Information at Different Epochs

Each circle represents an initialisation (50)
E. Loweimi

Dynamics of Learning - Info Path

Similar path for all initialisations \rightarrow Average E. Loweimi

Dynamics of Learning - Info Path

- Two distinct Phases
(1) $A \rightarrow C$
(2) $C \rightarrow E$

E. Loweimi

Dynamics of Learning - Info Path

- Two distinct Phases

E. Loweimi

Information Path - First Phase

- $A \rightarrow C$
- Fitting the labels
- Empirical Risk Min
- Fast

E. Loweimi

Information Path - First Phase

- $A \rightarrow C$
- Fitting the labels
- Empirical Risk Min
- Fast
- $\Delta I_{Y}>0$ and $\Delta I_{X}>0$

E. Loweimi

Information Path - Second Phase

- $C \rightarrow E$
- Empirical risk \approx constant
- Slow

Information Path - Second Phase

- $C \rightarrow E$
- Empirical risk \approx constant
- Slow
- $\Delta I_{X}<0\left(\right.$ and $\left.\Delta I_{Y} \geq 0\right)$

Information Path - Second Phase

- $C \rightarrow E$
- Empirical risk \approx constant
- Slow
- $\Delta \mathrm{I}_{\mathrm{X}}<0$ (and $\Delta \mathrm{I}_{\mathrm{Y}} \geq 0$)
- Compression
- Forget irrelevant info

Information Path - Second Phase

- $C \rightarrow E$
- Empirical risk \approx constant
- Slow
- $\Delta I_{X}<0\left(\right.$ and $\left.\Delta l_{Y} \geq 0\right)$
- Compression
- Forget irrelevant info
- Responsible for generalisation

Drift vs Diffusion

Diffusion: $\mathrm{C} \rightarrow \mathrm{E}$

Drift: $\mathrm{A} \rightarrow \mathrm{C}$

Drift vs Diffusion

Drift vs Diffusion

$$
A \longrightarrow C \nsim \Perp \because E
$$

SNR of Gradient

$\mathrm{SNR} \triangleq \frac{\operatorname{Mean}\left(\left\|\nabla W_{i}\right\|\right)}{S T D\left(\nabla W_{i}\right)}$

E. Loweimi

SNR of Gradient

$\mathrm{SNR} \triangleq \frac{\operatorname{Mean}\left(\left\|\nabla W_{i}\right\|\right)}{S T D\left(\nabla W_{i}\right)}$

E. Loweimi

23/33

SNR of Gradient

$\mathrm{SNR} \triangleq \frac{\operatorname{Mean}\left(\left\|\nabla W_{i}\right\|\right)}{\operatorname{STD}\left(\nabla W_{i}\right)}$

- Drift: High SNR \rightarrow Fast
- Diffusion: Low SNR \rightarrow Slow

Diffusion Improves Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR

Diffusion Improves Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR

E. Loweimi

Diffusion Improves Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR

Diffusion $(\mathrm{C} \rightarrow \mathrm{E}) \rightarrow$ Low SNR Large stochasticity

Diffusion Improves Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR
E. Loweimi

Diffusion \rightarrow Large stochasticity
\rightarrow Add noise to irrelevant features
\rightarrow Forget irrelevant details

Diffusion Improves Generalisation

Drift $(\mathrm{A} \rightarrow \mathrm{C}) \rightarrow$ High SNR

Noise Cov Matrix

Relevant Irrelevant

Diffusion \rightarrow Large stochasticity
\rightarrow Add noise to irrelevant features
\rightarrow Forget irrelevant details

Effect of Amount of Data

Effect of Amount of Data

Over-training
$\leftrightarrow I_{Y} \downarrow$ in Diffusion

E. Loweimi

Effect of Amount of Data

Over-training
$\leftrightarrow I_{Y} \downarrow$ in Diffusion Ideal early stop ... Just before $I_{Y} \downarrow$

E. Loweimi

Advantage of More Layers

E. Loweimi

Advantage of More Layers

- Faster diffusion/convergence to good generalisation

E. Loweimi

Advantage of More Layers

- Faster diffusion/convergence

 to good generalisation- Convergence time scales as a negative power of the number of effective layers

E. Loweimi

Effect of Training Data

- Better generalisation
- Higher IY

E. Loweimi

Effect of Training Data

- Better generalisation
- Higher Iy
- Limited effect on I_{x} (compression)
- Remains almost constant

Theoretical IB Bound

Encoder-decoder structure for each layer satisfies the IB bounds

Theoretical IB Bound

Beta for different layers

$$
\min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\}
$$

Theoretical IB Bound

$$
\begin{aligned}
& \text { Beta for different layers } \\
& \min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\} \\
& \begin{array}{l}
\beta \text { is inversely proportional } \\
\text { with the slope of tangent line }
\end{array}
\end{aligned}
$$

Theoretical IB Bound

$$
\begin{aligned}
& \text { Beta for different layers } \\
& \min _{q(t \mid x)}\{I(T ; X)-\beta I(T ; Y)\} \\
& \begin{array}{l}
\beta \text { decreases by moving } \\
\text { towards higher layers }
\end{array}
\end{aligned}
$$

How well the results generalise to other architectures and data?

How well the results generalise to other architectures and data?

When your whole neural network can be drawn as the legend to the plot analyzing it (Figure 4), you know you are in trouble!

Zeeshan Zia, a discussion in Quora

MNIST (or CIFAR-10 ?) CNN + ReLU

MNIST + CNN

CIFAR-10 + CNN + ReLU

CIFAR-10

Argument holds if in diffusion $\Delta I_{X}<0$ and $\Delta I_{Y} \geq 0$, which is the case here

E. Loweimi

Role of the Batch Size

Role of the Batch Size

Drift to diffusion transition:

$$
\operatorname{argmin} \frac{d}{d t} S N R \approx \operatorname{argmax} I(X ; T)
$$

E. Loweimi

Role of the Batch Size

Larger batch size \rightarrow delays transition to diffusion \rightarrow more iterations required (less randomness in diffusion)

- x-axis: batch size (incorrect xlabel/title)
- y-axis: argmin d/dt SNR

Role of the Batch Size

Larger batch size \rightarrow delays transition to diffusion \rightarrow more iterations required (less randomness in diffusion)

- x-axis: batch size
- y-axis: $\operatorname{argmax} \mathrm{I}(\mathrm{X} ; \mathrm{T})$

Outlines

- Problem Statement
- Information Theory Review
- Information Bottleneck (IB)
- Opening the Black Box of DNNs via IB
- Criticisms
- Conclusions

On the Information Bottleneck Theory of Deep Learning 远
Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Daniel Tracey, David Daniel Cox 15 Feb 2018 (modifed: 24 Feb 2018) ICLR2018 Conference Blind Submission Readers: Everyone Show Bibtex Show Revisions
Abstract: The practial successes of deep neural networks have not been matched by theoreical progress that satisfyingly explains their behavior. In this work, we study the information bottleneck (iB) theory of deep learning, which makes three specific claims: first, that deep networks undergo two distinct phases consisting of a n initial fiting phase and a subsequent compression phase, second, that the compression phase is causally related to the excellent generalization performance of deep network; and third, that the compression phase occurs due to the diffusion-like behavior of stochastic gradient descent. Here we show that none of these claims hold true in the general case. Through combination of analytical results and simulatoon, we demonstrate that the information plane trajectoy is predominanty a function of the neural nonlinearity employed: double-sided saturating nonlinearities Ike tanh yield a compression phase as neural a activations enter the saturation regime, butl linea activation functions and single-sided saturating nonlinearities Ike the widely used Relu in fact do not. Moreever, we find that there is n o evident causal connection between compression and generalization: networks that do not compress are still capable of generalization, and vice versa. Next, we show that the compression phase, when it exists, does not risise from stochasticicy in training by demonstrating that we can replicate the IB findings using full batch gradient descentr ather than stochastic gradient descent. Finally, we show that when an ninput domain consists of a subsee of task-relevant and taskirrelevant information, hidden representations do compress the taskirreevevant information, athough hhe overall information about the input may monotonically increase with training time, and that this compression happens concurrently with the fitting processs rather than during a subsequent compression period.
L :OR: We show that several claims of the information botleneck heory of deep learning are not true in the general case
Keywords: information bottleneck, deep learning, deep linear networks
21 Replies

```
-Dvalube
```


Andrew Saxe

``` (Harvard)
"A theory of deep learning dynamics: Insights from the linear case"
Princeton University
March 20, 2018

OpenReview.ne
Search ICLR 2018 Conference

Go to ICLR 2018 Conference homepage

\section*{i-RevNet: Deep Invertible Networks}
\(\square\)
Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, Edouard Oyallon
15 Feb 2018 (modifed: 23 Feb 2018) ICLR 2018 Conference Bilin Submission Readers: Everyone Show Bitex Show Revisions
Abstract: It is widey believed that the success of deep convolutional networks is based on progressively discarding uninformative variability bbut the input with ressect to the problem at hand. This is supported empirically by the difficuly of recovering images from their hidden representations, in most commonly used network architectures. In this papere we show via a oneto-o.one mapping that this loss of information is not a necessary condition to learn representations that generalize well on complicated problems, such as ImageNet., Viaa cascade of homeomorphic layers, we buid the Sis.Revetet, anetwork that can be fully inverted up to the final projection onto the classes, ie. no information is discarded. Building an invertible architecture is difficult, for one, because the local inversion is ill-conditioned, we verecome this by providing an explicit inverse.
An analysis of i.Rew et's learned representations suggests an alternative explanation for the success of deep networks by a progressive contraction and linear separation with depth. To shed light on the nature of the model learned by the Sis.Rev Net we reconstruct linear interpolation between natural image representations.

20 Replies

\section*{Rebuttal}
- Compression is an artefact of the double saturation of Tanh, it does not happen for ReLU

\section*{Two-phase process is not generic!}

Tanh,
small data, MI: Binnig

\section*{Tanh,}

MNIST,
MI: kernel-based


\section*{ReLU,}
small data, MI: Binnig

ReLU, MNIST, MI: kernel-based

\section*{Rebuttal}
- Compression is an artefact of the double saturation of Tanh, it does not happen for ReLU

\section*{Rebuttal}
- Compression is an artefact of the double saturation of Tanh, it does not happen for ReLU
- Slow diffusion \(\leftrightarrow\) due to small gradient at saturation

\section*{Rebuttal}
- Compression is an artefact of the double saturation of Tanh, it does not happen for ReLU
- Slow diffusion \(\leftrightarrow\) due to small gradient at saturation
- No causal relationship between compression (stochasticity of SGD) and generalisation

\section*{Rebuttal}
- Compression is an artefact of the double saturation of Tanh, it does not happen for ReLU
- Slow diffusion \(\leftrightarrow\) due to small gradient at saturation
- No causal relationship between compression (stochasticity of SGD) and generalisation
- i-RevNet: Ioss of information is not a necessary condition to learn representations that generalise well

\section*{Conclusions}
- Novel approach: Using Information Theory to study DNNs
- Mutual information between input/hidden/output layers is investigated to understand/visualise the DNNs and their learning dynamics
- Why DNNs generalise well?
- Stochasticity of SGD in diffusion \(\rightarrow\) forgetting irrelevant info by adding noise
- Trend is claimed to be general but ...
- ReLU \(\rightarrow\) no compression
- iRev-Net \(\rightarrow\) no forgetting and still generalise well!

\section*{That's It!}
- Thanks for Your Attention
- Q \& A

\author{
E. Loweimi
}

\section*{Appendices}
(A1) Sufficient Statistics
(A2) Information Bottleneck - Solution
(A3) Some Useful Resources
(A4) Information Theory and Statistical Mechanics

\section*{(A1) Sufficient Statistics}
- Fisher's Factorisation Theorem ( \(g\) and \(h \geq 0\) )
\[
p_{\theta}(x)=h(x) g_{\theta}(T(x))
\]
- T is sufficient statistics for Y if
\[
\begin{aligned}
& \text { Markov Chain }: Y \rightarrow X \rightarrow T \\
& \qquad I(T ; Y)=I(X ; Y) \longleftrightarrow Y \Perp X \mid T
\end{aligned}
\]
- T is minimum sufficient statistics for Y if
\[
\begin{aligned}
& T(X)=\underset{\operatorname{argmin}}{ } I(T ; X) \\
& \text { s.t. } I(T ; X)=I(T ; Y) \\
& \text { E. Loweimi }
\end{aligned}
\]

\section*{(A2) Info Bottleneck - Solution}
\[
\begin{aligned}
& \min _{q(t \mid x), q(t), q(y \mid t)}\{I(T ; X)-\beta I(T ; Y)\} \\
& \begin{cases}q(t \mid x) & =\frac{q(t)}{Z} \exp \left(-\beta D_{K L}[p(y \mid x) \| q(y \mid t)]\right) \\
q(t) & =\sum_{x} p(x) q(t \mid x) \\
q(y \mid t) & =\frac{1}{q(t)} \sum_{x} p(y \mid x) q(t \mid x) p(x)\end{cases}
\end{aligned}
\]

Named self-consistent equations
Solution: Blahut-Arimoto (iterative)

\section*{(A2) Info Bottleneck - Solution}
\[
\min _{q(t \mid x), q(t), q(y \mid t)}\{I(T ; X)-\beta I(T ; Y)\}
\]

\(q(t \mid x)\)
\[
\xrightarrow[{\xrightarrow[\text { Bayes }]{\text { Sey }}\left\{\begin{array}{ll}
q(t \mid x) & =\frac{q(t)}{Z} \exp \left(-\beta D_{K L}[p(y \mid x) \| q(y \mid t)]\right) \\
q(t) & =\sum_{x} p(x) q(t \mid x) \\
q(y \mid t) & =\frac{1}{q(t)} \sum_{x} p(y \mid x) q(t \mid x) p(x)
\end{array},\right.} ~]{\text { B(x) }}
\]

Named self-consistent equations Solution: Blahut-Arimoto (iterative)

\section*{(A3) Useful Resources}
- Tishby's Talk in Simon Institute https://www.youtube.com/watch?v=EQTtBRMOsIs
- Information Bottleneck Workshop http://www.cs.huji.ac.il/~tishby/NIPS-Workshop/
- The optimization process in the Information Plane https://www.youtube.com/watch?v=P1A1yNsxMjc
- Ravid Schwarz-Ziv, Data Science Summit 2018
https://www.youtube.com/watch?v=gOn8Po_NPe4

\section*{(A4) Info Theory \& Statistical Mechanics}

\author{
Information Theory and Statistical Mechanics
}

\section*{E. T. Jaynes}

Deparlment of Physics, Stanford University, Stanford, California
(Received September 4, 1956; revised manuscript received March 4, 1957)

Information theory provides a constructive criterion for setting up probability distributions on the basis of partial knowledge, and leads to a type of statistical inference which is called the maximum-entropy estimate. It is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information. If one considers statistical mechanics as a form of statistical inference rather than as a physical theory, it is fo rules, starting with the deterr are an immediate consequence
In the resulting "subjective sta are thus justified independent in particular independently of

\section*{Prior Probabilities}

\section*{Edwin T. Jaynes}

\author{
Department of Physics, Washington University, St. Louis, Missouri
}


Edwin Thompson Jaynes (1922-1998)

\footnotetext{
In decision theory, mathematical analysis shows that once the sampling distributions,
I decision theory, mathematical analysis shows that once the sampling distributions, loss function, and sample are specified, the only remaining basis for a choice among different admissible decisions lies in the prior probabilities. Therefore, the logical
foundations of decision theory cannot be put in fully satisfactory form until the foundations of decision theory cannot be put in fully satisfactory form until the
old problem of arbitrariness (sometimes called "subjectiveness") in assigning prior probabilities is resolved.
}
or not the results agree with experiment, they still represent the best estimates that could have been made on the basis of the information available
It is concluded that statistical mechanics need not be regarded as a physical theory dependent for its validity on the truth of additional assumptions not contained in the laws of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities,

\section*{E. Loweimi}```

