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Outline
● Detour: Two-pass E2E ASR
● Dual-mode E2E ASR: Streaming & Full-context
● Building Dual-mode Layers & Blocks
● Experimental Results
● Conclusion
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Training:
1) Train RNN-T (encoder & Decoder)

       2) Freeze Enc, train LAS decoder
       3) Fine-tune all jointly, using sum of losses

Possible decoding ways:
1) Beam search, LAS decode uses only RNN-T’s e1:T  [not yr]

       2) Rescore RNN-T’s Top-K hypothesises using LAS dec & e.

Related to deliberation network (NIPS 2017): refine first-pass 
decoding results in the second pass using global info. 

Joint training from scratch in unstable! 
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SU: short utterance (< 5.5 sec)
LU: long utterance (> 5.5 sec)
Latency increase: < 200*ms

* 200ms → limit of acceptable interactive latency  

Better WER, worse 
latency for streaming 
RNN-T (trade-off) 
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Streaming (on-line) ASR
● Emit each word hypothesis, on the fly
● Performance measures: 

– Recognition Accuracy
– hypothesis emission Latency

● Challenge: No future context info (causality)
– May be a limited look-ahead (e.g., 60 ms)

● Examples: CTC, RNN-T, ...
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Full-context (off-line) ASR
● Await completion of an utterance before emitting complete 

hypothesis (decoding)
 

● Speech measure: Accuracy & Real time factor
●  

● Example: (Attention) Encoder Decoder [RNN]
●  

● Better performance than streaming
– Access to future context
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● Developed & deployed separately, although SIMILAR 
in many aspects ...
– feature, data aug, Arch./reg./norm., objective function, 

training recipes, decoding method (AR*), ...
   

● Key DIFFERENCE ... Encoder ...
– Full-context → ht = fenc(x1:T, yhistory)

– Streaming → ht = fenc(x1:t, yhistory)   ← Causality [App. 1]

Streaming vs Full-context [E2E]
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Streaming vs Full-context Encoder

E. Loweimi  6/25

Left-context SA Full-context SA

Left-context Conv. Full-context Conv.



  

This Paper … Dual-Mode ASR
● What: Unify streaming [RNN-T] and full-context ASR
● How: Weight sharing (WS), Joint training (JT), IPKD*
● Why: Improve latency & accuracy of streaming ASR
● Core element/challenge: Dual-mode Encoder
● Encoder Architectures:

– Conformer [App. 2]

– ContextNet [App. 3]
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Dual-mode Encoder
● Need to (re)design some modules/layers

– Conv. Layer, Pooling, Self-attention, Norm. layer, …
 

● Design principles for dual-mode modules/layers
– … should be runnable in two modes [switch]
– … with minimum additional parameter overhead

● No separate modules! → Weight sharing
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Design Dual-mode Layers (1)
● Point-wise operators are naturally dual-mode

– No info propagation/processing across time
 

● Examples …
– Point-wise FFNN in Transformer/conformer
– Point-wise convolution (a.k.a. 1x1 convolution)
– Skip/residual connection (xt + f(xt))
– Dropout, Activation function, element-wise multiplication, ...
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Design Dual-mode Layers (2)

● We need to redesign the following ...
– Dual-mode (time-wise) convolution

– Dual-mode (time-wise) pooling

– Dual-mode self-attention

– Dual-mode batch/layer normalisation
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Dual-mode Conv. Layer
● Symmetric convolution (kernel size k) for full-context
● Causal convolution ((k+1)/2) for streaming

– Kernel biased/skewed to left

● Additional params (rel. to streaming): ((k-1)/2)

– Solid lines: Connected in both modes
-- Dash lines: Connected in full-context

xt-3 xt-2 xt-1 xt xt+1 xt+2 xt+3
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Dual-mode Pooling
● Squeeze-and-Excite layer in ContextNet

– Use cumsum(1:t) instead of avg. over all T frames

● No additional parameter (pooling is param-free!)
● How about freq-wise Conv?

xt-3 xt-2 xt-1 xt xt+1 xt+2xt-4

– Solid lines: Connected in both modes
-- Dash lines: Connected in full-context
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Softmax on
left context (1:t)

Left Context (causal)

T x T

t x t

Dual-mode Self-Attention
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Softmax on
 entire context (1:T)



  

Dual-mode Batch/Layer Norm
● Stats of streaming & full-context are different

● For each mode a separate norm layer is 
instantiated

● No parameter sharing between modes
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Training Modes
● Randomly sampled Training

– Randomly choose the mode, update parameters
– Control importance BY sampling probability
–  

● Joint Training … aggregate losses ...
– Loss = w1 LossFull-Context + w2 LossStreaming

– Control importance BY weights
 

● Empirically ... Joint-training is better
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Training Modes with IPKD
● In-place Knowledge Distillation (IPKD)

– Teacher ≡ Full-context; student ≡ Streaming
– “Inplace”:  share weight + trained jointly, on the fly
– Encourage consistency of predicted token probabilities

 

● Note: ONLY applicable with joint training regime
– Loss = w1 LossFull-Context + w2 LossStreaming + w3 LossIPKD

– Here, w1 = w2 = w3
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Algorithm 1 Pseudocode of training Dual-mode ASR network (Joint training)

Stop_gradient: LossIPKD does not backpropagate through computation 
graph of the full_context model (only affects streaming mode parameters).

.detach() in PyT



  

Experimental Setup
● Exactly following the baseline models settings

–  SpecAug, Adam, learning rate scheduling/warm-up

● Instead of mean, Latency@X% Percentile reported (robust)
– X% Percentile = InverseCDF(X/100); Median = InverseCDF(0.5)

● Data: 
– LibriSpeech (970h, #u: 281k) [Reading]
– MultiDomain (413kh, #u: 287M) [Voice Search, Far-field, 

YouTube, Meeting]
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Measuring Latency
● Latency Measure (ms): t2 - t1

– t1: when speaker stop speaking (EOS)

– t2: when last token is emitted in finalised results

● Note: Negative latency … Emit full hypothesis before speaker 
finishes is possible!←strong context modelling or too large EOS(?!)
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* Latency of Streaming mode improves remarkably

* …  Negative latency with Conformer! What if t1 is wrong (too large EOS)?!

* Accuracy improves marginally (for both modes)

Experimental Results – MultiDomain
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Experimental Results – LibriSpeech

E. Loweimi  21/25ContextNet ... 60ms look-ahead

Note: LibriSpeech W/O Language Model

Look-ahead
WER ↓ 
Latency ↑

Conformer 
has lower 
latency than 
ContextNet

60 ms



  

* [0,1] IPKD improves both accuracy & latency
* [1,2] Randomly Sampled training (Joint-training = off): worse WER, better latency 
* [0,3] W/0 weigh sharing (train 2 separate models): worse accuracy & latency

** Weight sharing effect → smaller, better and faster model

Ablation Study, Streaming Mode
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LibriSpeech

0)
1)
2)
3)



  

Dual-mode decreases latency ...
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Emission Lattice

Frame Index

Token
Index



  

Reviewers Comments
● Initial title was “Universal ASR”  ↔  over-stating

– Universal could have many dimensions, e.g., 
● close vs distant talking, single vs multi-lingual, clean vs 

noisy, narrow vs wideband, single vs multi-domain, ...

 

● Application to simultaneous machine translation (MT)?
– Unlike ASR, behaviour of online & offline MT systems 

could be very different
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● Dual-mode E2E ASR: Streaming (online) + Full-context (offline)
● Goal: improve emission latency and accuracy of streaming ASR
● Tricks: weight sharing, joint training, in-place knowledge 

distillation
● Challenge: Redesigning encoder layers to operate in dual-mode
● Tasks: LibriSpeech & MultiDomain
● Architectures: ContextNet & Conformer
● Results: SOTA emission latency and recognition accuracy

– … up to some negative latency for Conformer (& Transformer)
E. Loweimi  25/25

Conclusion



  

● Q&A

● Appendices:
(A1) Causal vs Autoregressive

(A2) Conformer

(A3) ContextNet

(A4) Squeeze-and-Excite Module
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Thanks for Your Attention!



  

Causality vs Auto-regressive 
● Causality: Yt0 = f(X1:t0); not any t > t0

– Characterisation based on input-output relationship

● Auto-regressive (AR): Yt0 = f(Yt<t0, X)
– Characterisation based on output-output relationship

– Antonym: Moving Average (MA) → Yt0 = f(X, [NO Y HERE]) 

● Example of Causal layers:
– Uni-dir. RNNs, Causal convolution, left-context Self-attention

● Example of Auto-regressive layers:
– Uni-dir. RNNs, decoder 
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Conformer
● Combines Convolution and Transformer
● To model both local (Convolution) and global [Self-

attention] dependencies
● Separable Convolution
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Convolution Module

GLU



  

ContextNet
● Depth-wise separable convolution + SE* layer + Swish 

activation
● Similar to QuartzNet [Jasper with separable conv]

E. Loweimi  A3/4

Convolution modules in ContextNet

* SE: Squeeze-and-Excite



  

● Goal: Weight/Scale channels using channel interdependencies

● Module: AvgPool → Linear (r) → ReLU → Linear (1/r) →Sigmoid

– r: compression ratio (bottleneck), e.g. 8 or 16 
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SE Module

SE-ResNet 
Module

Squeeze-and-Excite (SE) Module
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