

Dual-Mode ASR: Unify and Improve Streaming ASR with full-context Modelling

Erfan Loweimi

Centre for Speech Technology Research (CSTR) University of Edinburgh Listen!, 20 July 2021

Dual-Mode ASR: Unify and Improve Streaming ASR with full-context Modelling

Erfan Loweimi

Centre for Speech Technology Research (CSTR) University of Edinburgh Listen!, 20 July 2021

DUAL-MODE ASR: UNIFY AND IMPROVE STREAMING ASR WITH FULL-CONTEXT MODELING

Wei Han^{1†} Jiahui Yu¹ Anmol Gulati^{1†} Bo Li² **Chung-Cheng Chiu**¹ Tara N. Sainath² Yonghui Wu¹ **Ruoming Pang¹**

> ¹Google Brain ²Google LLC {jiahuiyu, rpang}@google.com

Outline

- Detour: Two-pass E2E ASR
- Dual-mode E2E ASR: Streaming & Full-context
- Building Dual-mode Layers & Blocks
- Experimental Results
- Conclusion

Two-Pass End-to-End Speech Recognition

Tara N. Sainath^{*}, Ruoming Pang^{*}, David Rybach, Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó Visontai, Qiao Liang, Trevor Strohman, Yonghui Wu, Ian McGraw, Chung-Cheng Chiu

Google, Inc., USA

{tsainath,rpang}@google.com

Joint training from scratch in unstable!

Training:

- 1) Train RNN-T (encoder & Decoder)
- 2) Freeze Enc, train LAS decoder
- 3) Fine-tune all jointly, using sum of losses

Possible decoding ways:

- 1) Beam search, LAS decode uses only RNN-T's $e_{1:T}$ [not y_r]
- → 2) Rescore RNN-T's Top-K hypothesises using LAS dec & e.

Related to *deliberation network* (NIPS 2017): refine first-pass decoding results in the second pass using global info.

INTERSPEECH

2019

Two-Pass End-to-End Speech Recognition

Tara N. Sainath^{*}, Ruoming Pang^{*}, David Rybach, Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó Visontai, Qiao Liang, Trevor Strohman, Yonghui Wu, Ian McGraw, Chung-Cheng Chiu

Google, Inc., USA

{tsainath,rpang}@google.com

Exp-ID	Decoding	SU	LU
BO	RNN-T	6.9	4.5
B1	LAS-only	5.4	4.5
El	Beam Search	6.1	4.8
<i>E2</i>	Rescoring	6.2	4.1

Better WER, worse latency for streaming RNN-T (trade-off)

INTERSPEECH

2019

SU: short utterance (< 5.5 sec) LU: long utterance (> 5.5 sec) Latency increase: < 200*ms

* 200ms \rightarrow limit of acceptable interactive latency

Streaming (on-line) ASR

- Emit each word hypothesis, on the fly
- Performance measures:
 - Recognition <u>Accuracy</u>
 - hypothesis emission Latency
- Challenge: No future context info (causality)
 - May be a limited look-ahead (e.g., 60 ms)
- Examples: CTC, RNN-T, ...

Full-context (off-line) ASR

- Await completion of an utterance before emitting complete hypothesis (decoding)
- Speech measure: Accuracy & Real time factor
- Example: (Attention) Encoder Decoder [RNN]
- Better performance than streaming
 - Access to future context

Streaming vs Full-context [E2E]

- Developed & deployed separately, although <u>SIMILAR</u> in many aspects ...
 - feature, data aug, Arch./reg./norm., objective function, training recipes, decoding method (AR*), ...
- Key <u>DIFFERENCE</u> ... Encoder ...
 - Full-context \rightarrow $h_t = f_{enc}(x_{1:T}, y_{history})$
 - Streaming $\rightarrow h_t = f_{enc}(x_{1:t}, y_{history}) \leftarrow Causality [App. 1]$

* ht: encoder output @ t

Streaming vs Full-context Encoder

E. Loweimi

King's College London

6/25

This Paper ... Dual-Mode ASR

- What: Unify streaming [RNN-T] and full-context ASR
- How: Weight sharing (WS), Joint training (JT), IPKD*
- Why: Improve latency & accuracy of streaming ASR
- **Core** element/challenge: Dual-mode Encoder
- Encoder Architectures:
 - Conformer [App. 2]
 - ContextNet [App. 3]

Dual-mode Encoder

- Need to (re)design some modules/layers
 - Conv. Layer, Pooling, Self-attention, Norm. layer, ...
- Design principles for dual-mode modules/layers
 - ... should be runnable in two modes [switch]
 - ... with minimum additional parameter overhead
 - No separate modules! \rightarrow Weight sharing

Design Dual-mode Layers (1)

- **Point-wise** operators are naturally dual-mode
 - No info propagation/processing across time
- Examples ...
 - Point-wise FFNN in Transformer/conformer
 - Point-wise convolution (a.k.a. 1x1 convolution)
 - Skip/residual connection $(x_t + f(x_t))$
 - Dropout, Activation function, element-wise multiplication, ...

Design Dual-mode Layers (2)

- We need to redesign the following ...
 - Dual-mode (time-wise) convolution
 - Dual-mode (time-wise) pooling
 - Dual-mode self-attention
 - Dual-mode batch/layer normalisation

Dual-mode Conv. Layer

- Symmetric convolution (kernel size k) for full-context
- Causal convolution ((k+1)/2) for streaming
 - Kernel biased/skewed to left
- Additional params (rel. to streaming): ((k-1)/2)

Dual-mode Pooling

- Squeeze-and-Excite layer in ContextNet
 - Use cumsum(1:t) instead of avg. over all T frames
- No additional parameter (pooling is param-free!)

 \bigcirc

• How about freq-wise Conv?

C S T

Dual-mode Self-Attention

Dual-mode Batch/Layer Norm

- Stats of streaming & full-context are different
- For each mode a separate norm layer is instantiated
- No parameter sharing between modes

C S T

Training Modes

- Randomly sampled Training
 - Randomly choose the mode, update parameters
 - Control importance BY sampling probability
- Joint Training ... aggregate losses ...
 - LOSS = W_1 LOSS_{Full-Context} + W_2 LOSS_{Streaming}
 - Control importance BY weights
 - Empirically ... Joint-training is better E. Loweimi

Training Modes with IPKD

- In-place Knowledge Distillation (IPKD)
 - Teacher ≡ Full-context; student ≡ Streaming
 - "Inplace": share weight + trained jointly, on the fly
 - Encourage consistency of predicted token probabilities
- Note: ONLY applicable with joint training regime
 - LOSS = W₁ LOSS_{Full-Context} + W₂ LOSS_{Streaming} + W₃ LOSS_{IPKD}
 - Here, $w_1 = w_2 = w_3$

E. Loweimi

Algorithm 1 Pseudocode of training Dual-mode ASR network (Joint training)

- for x, y in data_loader: # Load a minibatch of speech input x and text label y.
 with dual_mode_network.mode('fullcontext'): # Switch context to 'fullcontext' mode.
 # Compute full-context prediction given speech input x and text label y.
 fullcontext_pred = dual_mode_network.forward_encoder_decoder(x, y)
 # Compute RNN-T loss of full-context mode.
 fullcontext_loss = rnnt_loss(fullcontext_pred, y)
 - with dual_mode_network.mode('streaming'): # Switch context to 'streaming' mode. # Compute streaming prediction given speech input x and text label y. streaming_pred = dual_mode_network.forward_encoder_decoder(x, y) # Compute RNN-T loss of streaming mode. streaming_loss = rnnt_loss(streaming_pred, y) .detach() in PyT

```
# Add inplace knowledge distillation loss (full-context prediction as teacher).
distill_loss = inplace_distill_loss(streaming_pred, stop_gradient(fullcontext_pred))
```

```
# Compute total loss as a sum of full-context, streaming and distillation losses.
loss = fullcontext_loss + streaming_loss + distill_loss
loss.backward() # Update weights.
```

Stop_gradient: Loss_{IPKD} does not backpropagate through computation graph of the full_context model (only affects streaming mode parameters).

Experimental Setup

- Exactly following the baseline models settings
 - SpecAug, Adam, learning rate scheduling/warm-up
- Instead of mean, Latency@X% Percentile reported (robust)
 - X% Percentile = InverseCDF(X/100); Median = InverseCDF(0.5)
- Data:
 - LibriSpeech (970h, #u: 281k) [Reading]
 - MultiDomain (413kh, #u: 287M) [Voice Search, Far-field, YouTube, Meeting]

Measuring Latency

- Latency Measure (ms): t₂ t₁
 - t_1 : when speaker stop speaking (EOS)
 - t₂: when last token is emitted in finalised results
- Note: Negative latency ... Emit full hypothesis before speaker finishes is possible!

 – strong context modelling or too large EOS(?!)

19/25

Experimental Results – MultiDomain

Method	Mode	# Params (M)	VS Test WER(%)	Latency@50 (ms)	Latency@90 (ms)
ContextNet Conformer	Full-context Full-context	133 142	5.1 5.2		
LSTM (Sainath et al., 2020) ContextNet (Han et al., 2020) Conformer (Gulati et al., 2020)	Streaming Streaming Streaming	179 133 142	6.4 6.1 6.1	190 160 160	350 310 300
Dual-mode ContextNet	Full-context Streaming	133	4.9 6.0 (-0.1)	10 (-150)	220 (-90)
Dual-mode Conformer	Full-context Streaming	142	5.0 6.0 (-0.1)	-50 (-210)	130 (-170)

* Latency of Streaming mode improves remarkably

- * ... Negative latency with <u>Conformer</u>! What if t₁ is wrong (too large EOS)?!
- * Accuracy improves marginally (for both modes)

Note: LibriSpeech W/O Language Model

C S T

Experimental Results – LibriSpeech

Method	Mode	# Params (M)	Test Clean/Other WER(%)	Latency@50 (ms)	Latency@90 (ms)	
LSTM-LAS	Full-context	360	2.6 / 6.0			
QuartzNet-CTC	Full-context	19	3.9 / 11.3			
Transformer	Full-context	29	3.1 / 7.3			
Transformer	Full-context	139	2.4 / 5.6			
ContextNet	Full-context	31.4	2.4 / 5.4			
Conformer	Full-context	30.7	2.3 / 5.0			60 ms
Transformer	Streaming	18.9	5.0 / 11.6	80	190	.ook-ahead
ContextNet	Streaming	31.4	4.5 / 10.0	70	270	
Conformer	Streaming	30.7	4.6 / 9.9	140	280	VLK ↓
ContextNet Look-ahead	Streaming	31.4	4.1 / 9.0	150	420	atency ↑
Dual-mode Transformer	Full-context Streaming	29	3.1 / 7.9 4.4 (-0.6) / 11.5 (-0.1)	-50 (-130)	30 (-160)	Conformer
Dual-mode ContextNet	Full-context Streaming	31.8	2.3 / 5.3 3.9 _(-0.6) / 8.5 _(-1.5)	40 (-30)	160 (-110)	has lower than
Dual-mode Conformer	Full-context Streaming	30.7	2.5 / 5.9 3.7 (-0.9) / 9.2 (-0.7)	10 (-130)	90 (-190)	ContextNet

ContextNet ... 60ms look-ahead

E. Loweimi

Ablation Study, Streaming Mode

Weig	ht Sharing	Joint Training	Inplace Distillation	TestOther WER(%)	Latency@50 (ms)	Latency@90 (ms)
0)	V	V	V	8.5	40	160
1)	V	V	×	10.2 (+1.7)	120 (+80)	310 (+150)
2)	V	×	×	10.6 (+2.1)	90 (+50)	290 (+130)
3)	×	 ✓ 	V	9.9 (+1.4)	50 (+10)	210 (+50)

- * [0,1] IPKD improves both accuracy & latency
- * [1,2] Randomly Sampled training (Joint-training = off): worse WER, better latency
- * [0,3] W/0 weigh sharing (train 2 separate models): worse accuracy & latency
 ** Weight sharing effect → smaller, better and faster model

Dual-mode decreases latency ...

E. Loweimi

Reviewers Comments

- Initial title was "Universal ASR" ↔ over-stating
 - Universal could have many dimensions, e.g.,
 - close vs distant talking, single vs multi-lingual, clean vs noisy, narrow vs wideband, single vs multi-domain, ...

- Application to simultaneous machine translation (MT)?
 - Unlike ASR, behaviour of online & offline MT systems could be very different

Conclusion

- **Dual-mode E2E ASR**: Streaming (online) + Full-context (offline)
- Goal: improve emission latency and accuracy of streaming ASR
- **Tricks**: weight sharing, joint training, in-place knowledge distillation
- **Challenge**: Redesigning <u>encoder</u> layers to operate in dual-mode
- Tasks: LibriSpeech & MultiDomain
- Architectures: ContextNet & Conformer
- **Results**: SOTA emission latency and recognition accuracy
 - ... up to some negative latency for Conformer (& Transformer)

Thanks for Your Attention!

- Appendices:
 - (A1) Causal vs Autoregressive
 - (A2) Conformer
 - (A3) ContextNet
 - (A4) Squeeze-and-Excite Module

Causality vs Auto-regressive

- Causality: $Y_{t0} = f(X_{1:t0})$; not any $t > t_0$
 - Characterisation based on input-output relationship
- Auto-regressive (AR): $Y_{t0} = f(Y_{t < t0}, X)$
 - Characterisation based on output-output relationship
 - − Antonym: Moving Average (MA) \rightarrow Y_{t0} = f(X, [NO Y HERE])
- Example of Causal layers:
 - Uni-dir. RNNs, Causal convolution, left-context Self-attention
- Example of Auto-regressive layers:
 - Uni-dir. RNNs, decoder

Conformer

- Combines Convolution and Transformer
- To model both local (Convolution) and global [Selfattention] dependencies

E. Loweimi

Separable Convolution

A2/4

C S T

ContextNet

- Depth-wise separable convolution + SE* layer + Swish activation
- Similar to QuartzNet [Jasper with separable conv]

Squeeze-and-Excite (SE) Module

- Goal: Weight/Scale channels using channel interdependencies
- Module: AvgPool \rightarrow Linear (r) \rightarrow ReLU \rightarrow Linear (1/r) \rightarrow Sigmoid
 - r: compression ratio (bottleneck), e.g. 8 or 16

