

Deep Scattering Spectrum (DSS) and its Applications in ASR

Erfan Loweimi

Centre for Speech Technology Research (CSTR) University of Edinburgh

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 16, AUGUST 15, 2014

Deep Scattering Spectrum

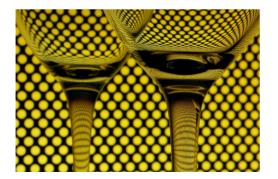
Joakim Andén, Member, IEEE, and Stéphane Mallat, Fellow, IEEE

Outline

- Deep Scattering Spectrum (DSS)
- IBM+JHU, ICASSP 2014
- IBM+JHU, INTERSPEECH 2014
- KCL+CSTR, INTERSPEECH 2020
- Wrap-up

Goal: Construct a representation ...

- ... preserves info while remains *invariant* and *stable* to variabilities within class, for example ...
 - Stable to (small) deformation, e.g. time warping
 - Invariant to geometric transformations, e.g. translation, scale

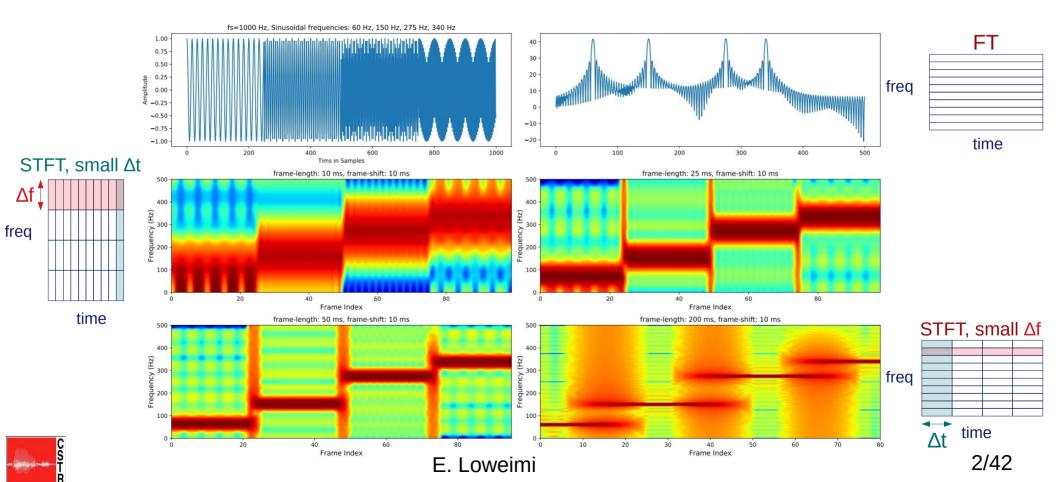


0000000000 11111//11 22222222 3333333333 4444444 555555555 666666666 7777777777 8888888888 9999999999

Detour

- Time-Frequency Analysis
- Wavelet Transform
- Amplitude Demodulation
- Time-warping Deformation
- Lipschitz Stability

Time-Frequency Analysis (TFA)

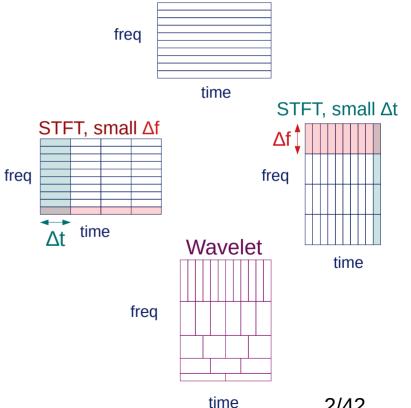


Time-Frequency Analysis (TFA)

FT:
$$X(\omega) = \int x(t) \ e^{-j\omega t} dt$$

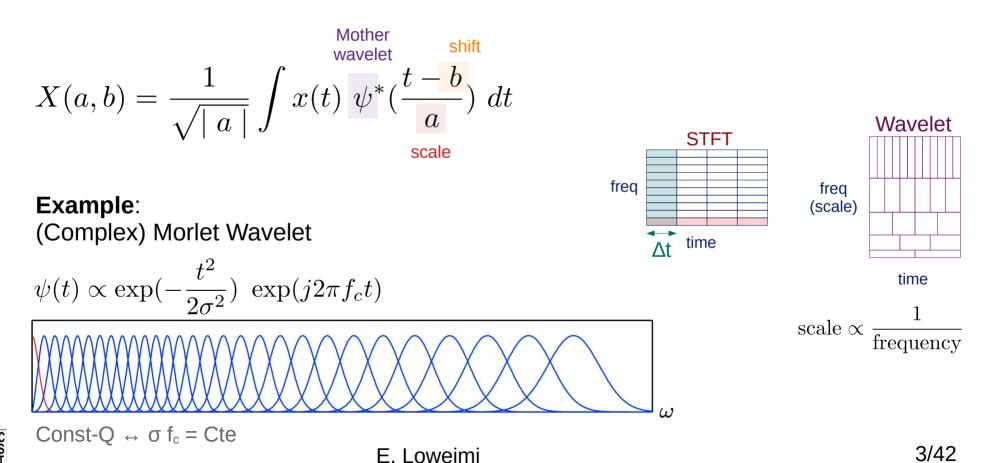
STFT:
$$X(t, \omega) = \int x(t') \frac{w(t'-t)}{w(t'-t)} e^{-j\omega t'} dt'$$

Wavelet:
$$X(a,b) = \frac{1}{\sqrt{|a|}} \int x(t) \ \psi^*(\frac{t-b}{a}) \ dt$$



FT

Wavelet Transform

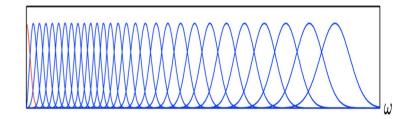


Wavelet Transform

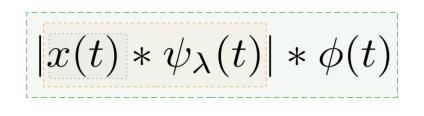
- Wavelet is a filterbank, defined in time domain
- Conv. with each filter (ψ_{λ}) returns subband signal, $x_{\lambda}(t)$
- $x_{\lambda}(t)$ is complex; $| . | \rightarrow$ extract envelop
 - Assume $x_{\lambda}(t)$ is an *analytic signal*

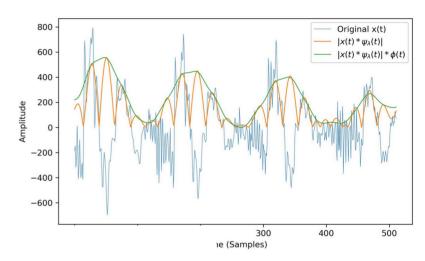
$$x_{\lambda}(t) = |x(t) * \psi_{\lambda}(t)|$$

$$\begin{aligned} x_{\text{analytic}}(t) &= x(t) + j\mathcal{H}\{x(t)\}\\ x_{\text{analytic}}(t) \mid = \text{Envelope of } x(t) \end{aligned}$$



Amplitude Demodulation

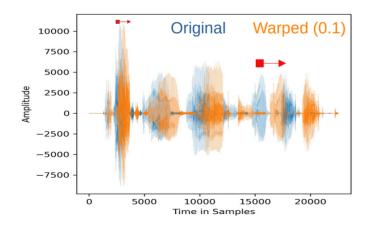


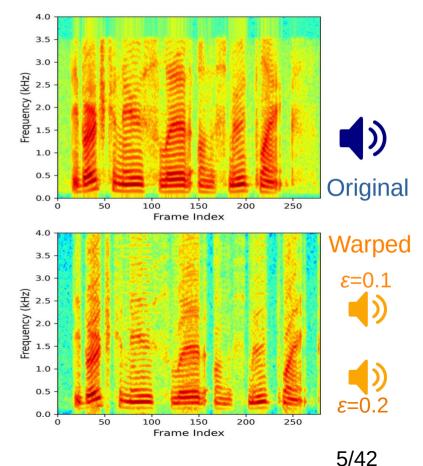


- $-\phi(t)$: Low-pass filtering
- $| . | * \phi(t)$: Extract Envelop (amplitude demodulation)
- $-x(t) * \psi_{\lambda}(t)$: Extract subband signal
- $-|x(t) * \psi_{\lambda}(t)| * \phi(t)$: Extract envelop of subband signal

Time-warping Deformation (TWD)

- Variable time-shift
 - Definition: $x(t) = x_{\tau}(t \tau(t))$
 - Example: $\tau(t) = \varepsilon t$





Lipschitz Stability

- Stability: small deformation in x = >> small change in $\Phi(x)$
 - Deformation size measured by Supt $\nabla \tau(t)$
 - Change size \rightarrow Euclidean distance
- $\Phi(x)$ is Lipschitz stable to deformation $x_{\tau}(t)$ if a C > 0 exists s.t.

$$\forall \tau, ||\Phi(x) - \Phi(x_{\tau})|| \le C \sup_{t} |\nabla \tau(t)| ||x||$$

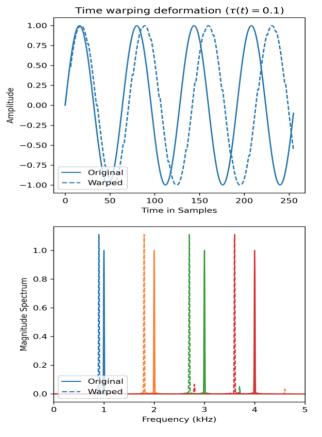
• The lower the C, the higher the stability

Spectrogram (|X(t,ω)|)

- Invariant to time-shift (c) [:-)|
- Unstable to TWD [:-(|
 - Larger $\omega \rightarrow$ Larger $\Delta \omega => No C!$

$$x_c(t) = x(t-c) \xrightarrow{\mathcal{F}} e^{-j\omega_k n_0} X(\omega) \xrightarrow{|.|} |X(\omega)|$$

$$x_{\tau}(t) = x(t - \tau(t)) = x(t - \epsilon t)$$
$$x_{\tau}(t) \xrightarrow{\mathcal{F}} X_{\tau}(\omega) = \frac{1}{1 - \epsilon} X(\frac{\omega}{1 - \epsilon}) \xrightarrow{|.|} \approx |X_{\tau}(\omega)|$$



Mel-Spectrogram

- $H(\omega; \lambda_i)$: frequency response of i^{th} filter (λ_i = centre frequency)
- Role: frequency **averaging** + subsampling \approx avg pooling
 - Makes Mx(*t*; λ_i) Lipschitz stability (unlike |X(t, ω)|) [:-)|
 - Brings about irreversible information loss [:-(|

$$Mx(t,\lambda_i) = \int_{\omega} |X(t,\omega)|^2 |H(\omega;\lambda_i)|^2 d\omega$$

=
$$\int_{t'} |x(t,t') * h(t';\lambda_i)|^2 dt'$$
 Plancherel Theorem

Mel-Spectrogram

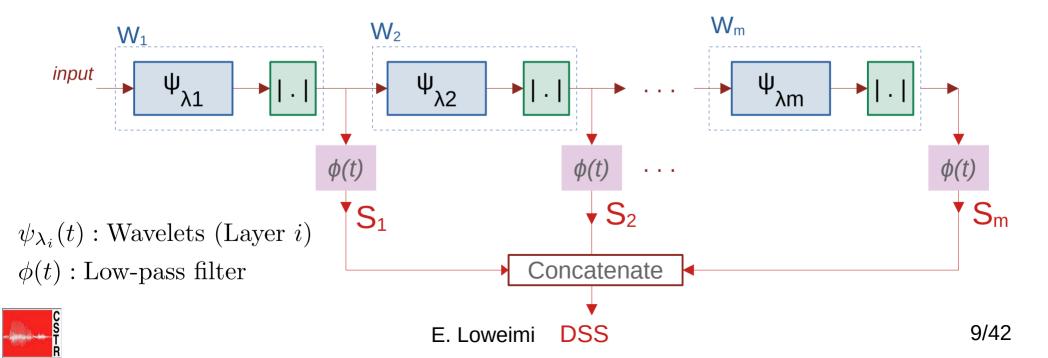
- $H(\omega; \lambda_i)$: frequency response of *i*th filter (λ_i = centre frequency)
- Role: frequency **averaging** + subsampling ≈ avg pooling
 - Makes Mx(*t*; λ_i) Lipschitz stable (unlike |X(t, ω)|) [:-)|
 - Brings about irreversible information loss [:-(|

$$Mx(t,\lambda_i) = \int_{\omega} |X(t,\omega)|^2 |H(\omega;\lambda_i)|^2 \ d\omega$$

$$\approx |x(t) * h(t;\lambda_i)|^2 * \phi^2(t)$$
Proof in
Appendix A

Scattering Transform (1)

• A cascade of Wavelet transforms (linear) and modulus (non-linear)



Scattering Transform (2)

• A cascade of Wavelet ($\Psi_{\lambda}(t)$) transforms and modulus (| . |)

Oth order

 $S_0 \mathbf{x}(t) = x(t) * \phi(t)$

1st order $S_1 x(t, \lambda_1) = |x(t) * \psi_{\lambda_1}(t)| * \phi(t)$

 $S_{2}x(t,\lambda_{1},\lambda_{2}) = ||x(t) * \psi_{\lambda_{1}}(t)| * \psi_{\lambda_{2}}(t)| * \phi(t)$ 2nd order

Mth order

$$S_m \mathbf{x}(t, \lambda_1, \cdots, \lambda_m) = | \cdots | \mathbf{x}(t) * \psi_{\lambda_1}(t) | * \cdots | * \psi_{\lambda_m}(t) | * \phi(t)$$

Scattering Transform (3)

- A cascade of Wavelet ($\Psi_{\lambda}(t)$) transforms and modulus
- $\phi(t)$: low-pass filter \rightarrow averaging \rightarrow stability + information loss

 $\begin{array}{ll} \mathbf{0}^{\text{th}} \text{ order} & \mathbf{S}_0 \mathbf{x}(t) = x(t) * \phi(t) \\ \mathbf{1}^{\text{st}} \text{ order} & \mathbf{S}_1 \mathbf{x}(t, \lambda_1) = |x(t) * \psi_{\lambda_1}(t)| * \phi(t) \\ \mathbf{2}^{\text{nd}} \text{ order} & \mathbf{S}_2 \mathbf{x}(t, \lambda_1, \lambda_2) = || \ x(t) * \psi_{\lambda_1}(t)| * \psi_{\lambda_2}(t)| \ * \ \phi(t) \end{array}$

Mth order

$$S_m \mathbf{x}(t, \lambda_1, \cdots, \lambda_m) = | \cdots | \mathbf{x}(t) * \psi_{\lambda_1}(t) | * \cdots | * \psi_{\lambda_m}(t) | * \phi(t)$$

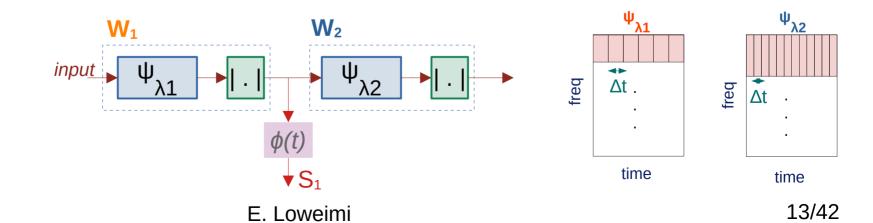
Role of Scattering Coefficients

- First order scattering coef. $(S_1) \equiv$ filterbank energies
- S_m aims at compensating for lost info in S_{m-1}
- Information loss ... due to low-pass filtering ...
 - Fast temporal transients (high freq.) info, e.g. attack, is lost!

Role of Scattering Coefficients

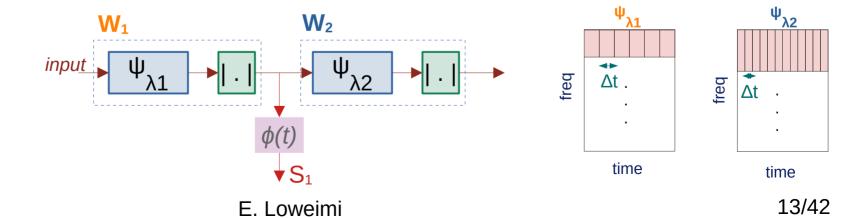
- First order scattering coef. $(S_1) \equiv$ filterbank energies
- S_m aims at compensating for lost info in S_{m-1}
- Information loss ... due to low-pass filtering ...
 - Fast temporal transients (high freq.) info, e.g. attack, is lost!
- Solution: Another transform with a higher *time resolution*
 - ... should better localise the transients in time

- $\Psi_{\lambda 2}$ should have a smaller Δt than $\Psi_{\lambda 1}$
 - $\Psi_{\lambda 2}$'s filters should be narrower in time domain
 - wider in frequency domain

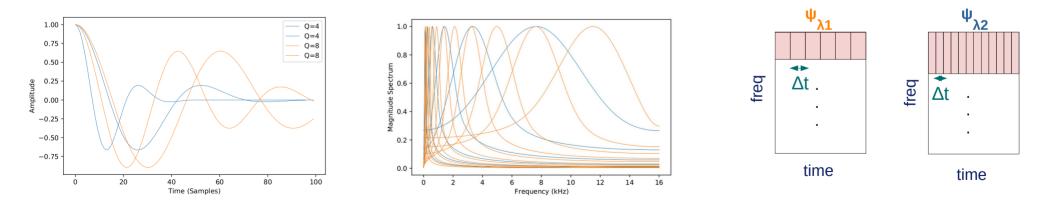


- $\Psi_{\lambda 2}$ should have a smaller Δt than $\Psi_{\lambda 1}$
 - $\Psi_{\lambda 2}$'s filters should be narrower in time domain (wider in Hz)
- Ψ_{λ} is in a constant-**Q** filterbank (Q = knob)

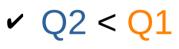
- $Q_1 > Q_2$ or $Q_1 < Q_2$?

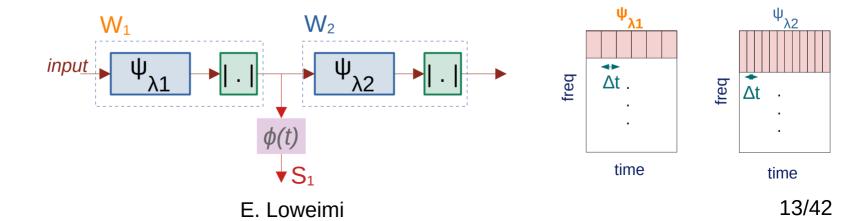


- $\Psi_{\lambda 2}$ should have a smaller Δt than $\Psi_{\lambda 1}$
 - $\Psi_{\lambda 2}$'s filters should be narrower in time domain
- Smaller $Q \rightarrow$ filters wider in freq domain \rightarrow narrower in time



- $\Psi_{\lambda 2}$ should have a smaller Δt than $\Psi_{\lambda 1}$
 - $\Psi_{\lambda 2}$'s filters should be narrower in time domain
- Ψ_{λ} is in a constant-**Q** filterbank (Q = knob)





Sparsity of Higher Order Coef

10

Frequency (kHz)

12

14

16

- Higher order coef are sparse (mostly zero)
- Non-zero if $\Psi_{\lambda 1}$ and $\Psi_{\lambda 2}$ overlap
- Only compute *non-negligible* coefficients ...

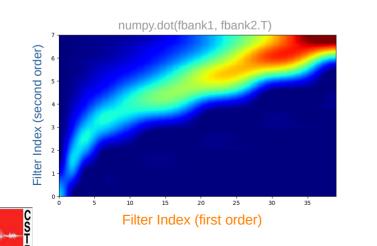
1.0

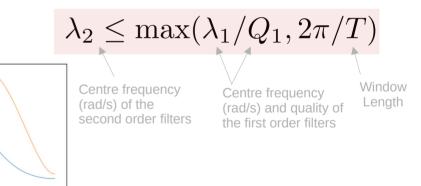
0.8

Magnitude Spectrum 6.0

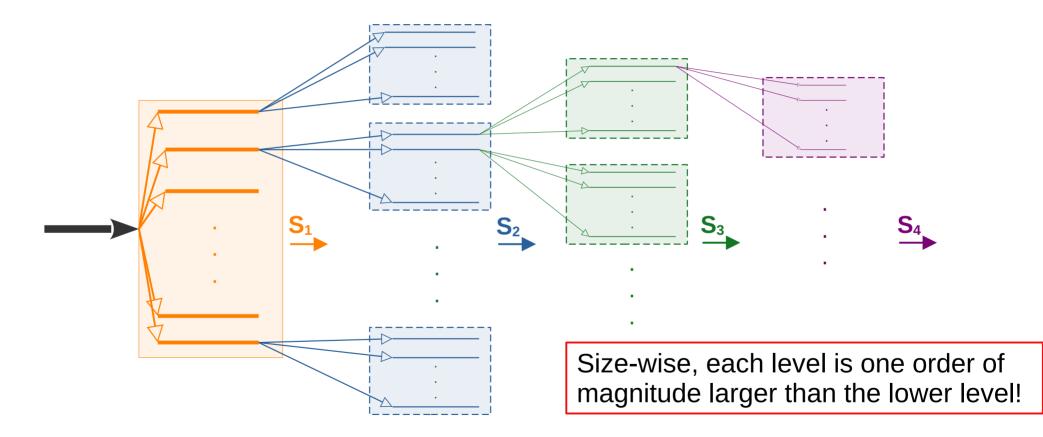
0.2

0.0





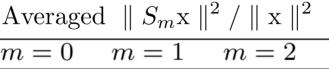
Dimension of Scattering Coef.



Energy (?) of Scattering Coef.

- For 25ms signal decomposition ...
 - 94.5% of energy is in S_1 , ~ 4.8% in S_2
- By frame extension energy of high order Coef. increases
 - Not useful for speech, but may be music

Т	m = 0	m = 1	m=2	m = 3
$23 \mathrm{ms}$	0.0%	94.5%	4.8%	0.2%
$93 \mathrm{ms}$	0.0%	68.0%	29.0%	1.9%
$370 \mathrm{ms}$	0.0%	34.9%	53.3%	11.6%
1.5 s	0.0%	27.7%	56.1%	24.7%



F. Loweimi

Normalising Scattering Coef.

- Normalise order *m* with order *m-1*
- Goal: improve invariability, e.g. to channel distortion

$$S_{1}(t,\lambda_{1}) = \frac{S_{1}(t,\lambda_{1})}{S_{0}(t,\lambda_{1}) + \epsilon} \qquad S_{2}(t,\lambda_{1},\lambda_{2}) = \frac{S_{2}(t,\lambda_{1},\lambda_{2})}{S_{1}(t,\lambda_{1}) + \epsilon} \qquad \underset{\text{threshold}}{\text{Silence}}$$

$$S_{m}(t,\lambda_{1},\cdots,\lambda_{m}) = \frac{S_{m}(t,\lambda_{1},\cdots,\lambda_{m})}{S_{m-l}(t,\lambda_{1},\cdots,\lambda_{m-1}) + \epsilon}$$

Normalising Scattering Coef.

- Normalise order *m* with order *m-1*
- Goal: improve invariability, e.g. to channel distortion

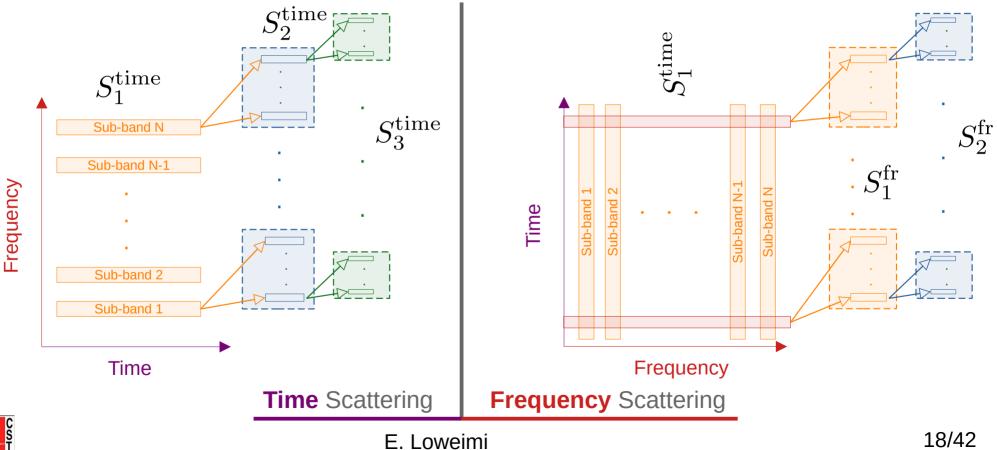
$$S_m(t,\lambda_1,\cdots,\lambda_m) = \frac{S_m(t,\lambda_1,\cdots,\lambda_m)}{S_{m-l}(t,\lambda_1,\cdots,\lambda_{m-1}) + \epsilon}$$

 $\begin{aligned} h(t) * \psi_{\lambda}(t) &\approx |H(\omega = \lambda)| \ \psi_{\lambda}(t) \\ | \ (x(t) * h(t)) * \psi_{\lambda}(t) \ | &\approx |H(\omega = \lambda)| \ |x(t) * \psi_{\lambda}(t)| \end{aligned}$

Holds only when H(ω) is approximately constant over support of $\psi(\omega;\lambda)$

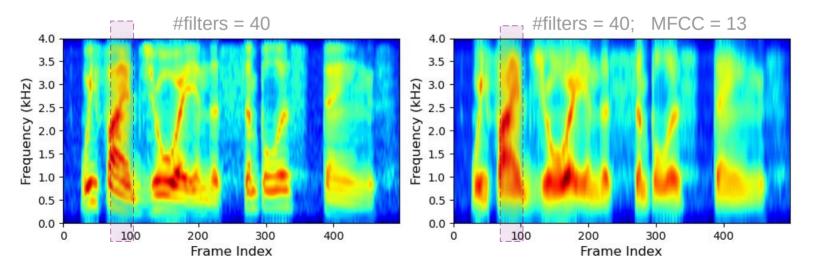
<1-

Frequency Scattering (1)



Frequency Scattering (2)

- Similar to freq. avg. by setting higher order MFCCs to 0
- Provides stability to *frequency transposition*



Frequency Scattering (2)

- Similar to freq. avg. by setting higher order MFCCs to 0
- Provides stability to *frequency transposition*
- Only the first-order is used, with small Q (e.g. Q=1)
- Filters are centred at *quefrency* λ

$$S^{\mathrm{fr}} z(\gamma, \lambda_q) = |z(\gamma) * \psi_{\lambda_q}(\gamma)| * \phi^{\mathrm{fr}}(\gamma)$$
$$\gamma = \log_2(\lambda)$$

Experimental Results

- Second order helps
 - Especially for music (Y?)
- Third order may slightly help
 - Costly because of dimension
- Freq. scattering helps

Representations	GTZAN	TIMIT
Δ -MFCC (T = 23 ms)	20.2 ± 5.4	18.5
Δ -MFCC (T = 740 ms)	18.0 ± 4.2	60.5
State of the art (excluding scattering)	9.4 ± 3.1 8	16.7 43
	T = 740 ms	T = 32 ms
Time Scat., $l = 1$ order	19.1 ± 4.5	19.0
Time Scat., $l = 2$	10.7 ± 3.1	17.3
Time Scat., $l = 3$	10.6 ± 2.5	18.1
Time & Freq. Scat., $l = 2$	9.3 ± 2.4	16.6
Adapt Q_1 , Time & Freq. Scat., $l = 2$	8.6 ± 2.2	15.9

- * GTZAN: Music Genre Classification
- * TIMIT: phone classification
- * Classifier: SVM with Gaussian Kernel
- * Adapt \rightarrow multi-resolution: Q=1, 8

Sturm, 2012, "An Analysis of the GTZAN Music Genre Dataset" "... 5% ... exact duplicates, 10.8% is mislabelled ..."

Properties of Scattering Transform

- Similar to CNNs (hierarchical) but involves no learning
 - Learns a general (not task-specific) representation; interpretable
- Translation-invariant, stable to deformation, preserves info
- Some similarities to physiological models (cochlea, const-Q)
- Energy conservative and contractive mapping
- Has approximate and non-trivial inverse transformation
- Poorer frequency resolution than STFT

DEEP SCATTERING SPECTRUM WITH DEEP NEURAL NETWORKS

Vijayaditya Peddinti[†]*, Tara N. Sainath[‡], Shay Maymon[‡] Bhuvana Ramabhadran[‡], David Nahamoo[‡], Vaibhava Goel[‡]

This paper investigates ...

- Usefulness of ...
 - DSS for TIMIT phone recognition
 - Multi-resolution DSS
- Optimal architecture for ...
 - Processing S_1 and S_2 , simultaneously
 - Multi-resolution DSS

Experimental Setup

- Task: TIMIT phone recognition
- Baseline: 40-dim log-mel fbank + Δ + $\Delta\Delta$
- DNN: 2 x CNN (256 filters) \rightarrow 3 x FC (1024)
- Output/Target: CI (147) and CD (2400)
- MVN for log-MeI and S_1 ; MN for S_2
 - Scatter transfer operator act like var-norm (?)
- Delta only for log-mel and S1; not S2 [not beneficial]

Experimental Results – TIMIT

- PERs of log-Mel and $S_1 r$ similar
 - TIMIT, **0.3**, statistically significant?
- Using S₂ may help, but NOT consistently!
 - Why? Functionality overlap ...
 - Δ and S₂? $\Delta\Delta$ and S₃?
- ReLU and Regularisation help

Feature	PER	
reature	CI	CD
$logmel + \Delta + \Delta\Delta$	19.3	18.7
$S_1x(t,\lambda_1) + \Delta + \Delta\Delta$	▼ 19.0	18.7

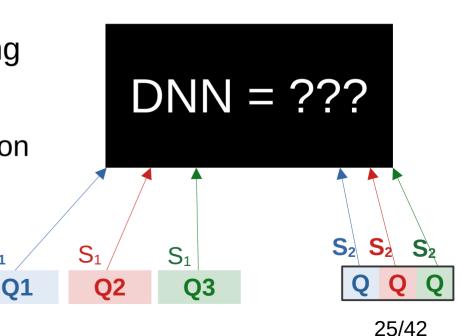
Non-linearity	$S_1 + \Delta + \Delta \Delta$	$S_1 + \Delta + \Delta \Delta + S_2$
Sigmoid	21.3	20.9
ReLU	20.0	20.3
ReLU+regularization	19.0	18.8

* CI: context-independent (147)

- * CD: context-dependent (2400)
- * Regularisation: MaxNorm and Dropout

Multi-Resolution Approach

- Use multiple filterbanks with various Qs
 - ONLY for S_1 ; $S_2 \leftrightarrow always$ Q=1
- Advantage: complementary modelling
 - Small Q \rightarrow better time resolution
 - Large Q \rightarrow better frequency resolution
- Optimal architecture to combine???

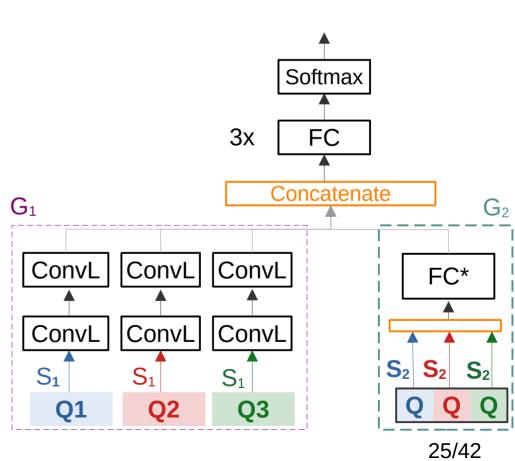


E. Loweimi

S₁

Architecture for Multi-Resolution

- Multi-resolution \equiv Various Qs
- Process S₁ with (2x) ConvL
- Process S₂ with FC*
 - S_2 is sparse + Limited local corr
 - Not optimal for ConvL
 - Too short filters



E. Loweimi

Multi-Resolution -- TIMIT -- CI

- Multi-resolution helps!
- Multi-resolution for S_1 (G₁) is more helpful than S_2
 - 0.6 vs 0.2
- Optimal width for FC* is 128

Feature Stream	PER
$S_1 + \Delta + \Delta \Delta$	19.0
$G_1 + \Delta + \Delta \Delta$	18.4
$S_1 + \Delta + \Delta \Delta + S_2$	18.8
$G_1 + \Delta + \Delta \Delta + G_2 + 1024 \text{ HU}$	19.1
G_1 + Δ + $\Delta\Delta$ + G_2 +256 HU	18.7
G_1 + Δ + $\Delta\Delta$ + G_2 +128 HU	18.2
G_1 + Δ + $\Delta\Delta$ + G_2 + 64 HU	18.6

- * G_1 : multi-resolution S_1
- * G₂: multi-resolution S₂
- * HU: #hidden units of FC*

Multi-Resolution -- TIMIT -- CD

- Using S₂ helps
 - PER: 18.7 → 17.9 [0.8]
 - For CI: 19.0 \rightarrow 18.8 [0.2]
- Multi-Resolution helps
 - PER: 17.9 \rightarrow 17.4 [0.5]
 - For CI: 18.8 \rightarrow 18.2 [0.6]

Feature Stream	PER
$S_1 + \Delta + \Delta \Delta$	18.7
S_1 + Δ + $\Delta\Delta$ + S_2 128 HU	17.9
G_1 + Δ + $\Delta\Delta$ + G_2 +128 HU	<u>17.4</u>

- * G1: multi-resolution S1
- * G₂: multi-resolution S₂
- * HU: #hidden units of FC*

Deep Scattering Spectra with Deep Neural Networks for LVCSR Tasks

*Tara N. Sainath*¹, *Vijayaditya Peddinti*², *Brian Kingsbury*¹, *Petr Fousek*¹, *Bhuvana Ramabhadran*¹, *David Nahamoo*¹

¹IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A ²Center for Language and Speech Processing, Johns Hopkins University, MD 21218, U.S.A tsainath@us.ibm.com, vijay.p@jhu.edu, bedk@us.ibm.com, petr_fousek@cz.ibm.com, {bhuvana, nahamoo}@us.ibm.com

14-18 September 2014, Singapore

This paper investigates ...

- LVCSR (BN: 50h; BN: 430h)
- Multi-resolution + frequency scattering effect
- Dimensionality reduction
- Speaker adaptation
- Sequence training

Experimental Results

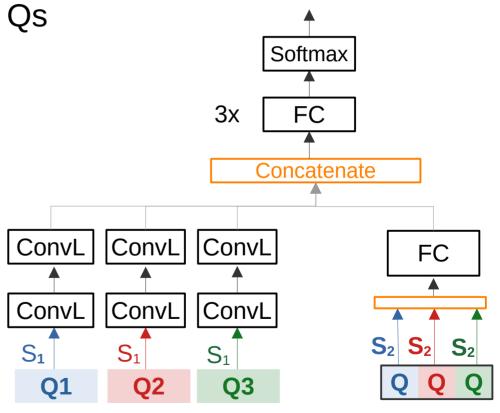
- S₁(+S₂) is comparable to log-mel!
- S₂ slightly helps!
 - WER: 16.0 \rightarrow 15.9
- Frequency scattering helps!
 - WER: 15.9 \rightarrow 15.5
- Gain carries over to larger tasks

English Broadcast News, 50h

Feature	WER
log-mel baseline	15.9
S_1 , time	16.0
S_1+S_2 , time	15.9
S_1+S_2 , time+frequency	15.5

Multi-Resolution Approach

- Multiple filterbanks with different Qs
- Various Qs ONLY for S_1
 - For S₂, always Q=1
- S₁ modelled by ConvL
- S_2 modelled by FC
 - S₂ is sparse; Limited local corr
 - Not optimal for ConvL



E. Loweimi

Experimental Results – Multi-Resolution

- Q=8 is optimal
 - Consistent with human system
- Multi-resolution helps
 - Best Q=(8,13)
- Time+Frequency scattering helps
 - Not if Q is too low!

Feature	WER	WER
	Time Scat.	Time+Freq. Scat.
log-mel baseline	15.9	15.9
S_1+S_2 (Q=1)	20.5	25.0
S_1+S_2 (Q=4)	16.2	16.3
S_1+S_2 (Q=8)	15.9	15.5
S_1+S_2 (Q=13)	16.1	15.7
$S_1+S_2 (Q=1,8)$	15.7	15.5
S_1+S_2 (Q=1,13)	15.5	15.5
S_1+S_2 (Q=4,13)	15.6	15.1
S_1+S_2 (Q=8,13)	15.3	15.1
$S_1 + S_2 (Q=1,4,13)$	15.7	-

Dimensionality Reduction of $S_1 \& S_2$

- Dim. Reduction methods ...
 - $\label{eq:solution} \textbf{-} \quad S_2 \ \rightarrow \ PCA \ \& \ LDA$
 - $S_1 \rightarrow$ Linear bottleneck

Feature	WER	Params
Baseline $S_1, tf+S_2, tf$ (Q=4,13)	15.1	26.5M
S_1, tf + pca128 (S_1, f, S_2)	15.2	14.1M
S_1, tf + pca256 (S_1, f, S_2)	15.2	15.5M
S_1, tf + lda128 (S_1f, S_2)	15.1	14.1M

Conclusion

 Identical results with a smaller network

Feature	WER	Params
Baseline $S_1, tf+S_2, tf$ (Q=4,13)	15.1	26.5M
S_1, tf + lda128 $(S_1 \mathbf{f}, S_2)$	15.1	14.1M
S_1, tf , bn=128 + lda128(S_1f , S_2)	15.4	10.0M
S_1, tf , bn=256 + lda128(S_1 f, S_2)	15.1	10.8M

Speaker Adaptation

- VTLN helps!
 - ONLY for S₁ (S₂ unwarped)
- fMLLR & i-vector help!
 - Extra input stream to the FC
 - Do not obey locality
 - More effective than VTLN!
- Using 2xConv Layers help!

Feature	WER	WER
	no VTLN	with VTLN
log-mel	15.9	15.4
S_1+S_2 , time+freq, Q=8	15.5	15.0
S_1+S_2 , time+freq, Q=4,13	15.1	14.7

Feature	WER
log-mel +fMLLR+ivectors	13.9
S_1+S_2 , time+freq, Q=4,13	13.4

Feature	WER
joint CNN/DNN	13.4
DNN	14.2

Experimental Results

- Sequence training (after CE) improves the results
- Gain carries over to larger data (50h \rightarrow 430h)

• Comparing multiQ DSS with log-mel; is it fair?

English Broadcast News, 50h

Feature	WER
log-mel	12.5
S_1+S_2 , time+freq, Q=4,13	12.0

English Broadcast News, 430h

Feature	WER
log-mel	14.2
m1+m2, time+freq, mulitQ	13.2

What are m1 and m2?

"Log-Mel+MFCC" vs DSS

- S₁ and log-mel have identical WER!
- S_2 slightly helps (15.4 \rightarrow 15.2)
- Frequency scatter slightly helps $(15.2 \rightarrow 15.0)$
- Frequency scatter effect is similar to MFCC
- MultiQ "log-mel+MFCCs" match DSS with all bells & whistles!

Feature	WER
log-mel, Q=8	15.4
S_1 , time scatter, Q=8	15.4
$S_1 + S_2$ time scatter, Q=8	15.2
$S_1 + S_2$ time+freq scatter, Q=8	15.0
log-mel+mfcc, Q=8	15.0
$S_1 + S_2$ time+freq scatter, Q=4,13	14.7
log-mel + mfcc, Q=4,13	14.6

INTERSPEECH 2020 October 25–29, 2020, Shanghai, China

Deep Scattering Power Spectrum Features for Robust Speech Recognition

Neethu M. Joy¹, Dino Oglic¹, Zoran Cvetkovic¹, Peter Bell², and Steve Renals²

¹ Department of Engineering, King's College London, UK ² Center for Speech Technology Research, University of Edinburgh, UK {neethu.joy, dino.oglic, zoran.cvetkovic}@kcl.ac.uk, {peter.bell, s.renals}@ed.ac.uk

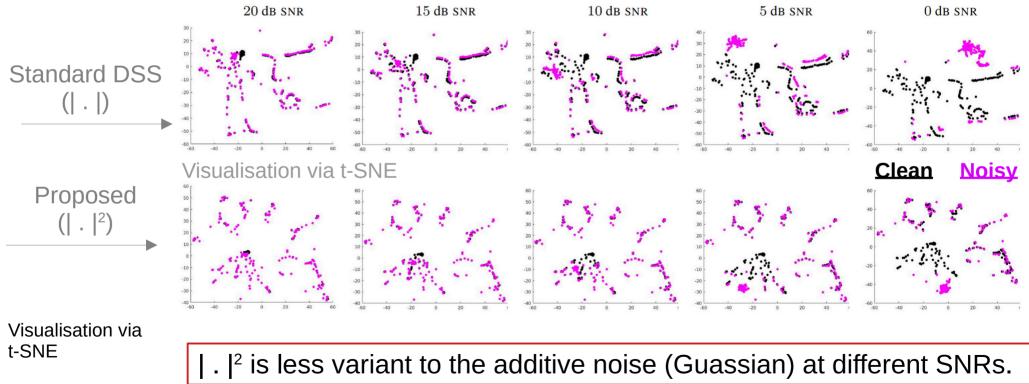
This paper ...

- Investigates usefulness of DSS (S₁ and S₂) for robustness ASR
- Replaces modulus with squared modulus non-linearity
- Comparison with similar architectures

- Amplifies strong coefficients
 - may improve robustness + better speech/noise separation
- Amplifies *sparsity*

$$\hat{S}_{1}(t,\lambda_{1}) = |x(t) * \psi_{\lambda_{1}}(t)|^{2} * \phi(t)$$
$$\hat{S}_{2}(t,\lambda_{1},\lambda_{2}) = ||x * \psi_{\lambda_{1}}(t)|^{2} * \psi_{\lambda_{2}}(t)|^{2} * \phi(t)$$

Replace Modulus with Squared Modulus (2)



Experimental Results – Aurora-4 Clean Very good WER for this task!

FEATURES	A ₁	B_{2-7}	C ₈	D ₉₋₁₄	AVG ₁₋₁₄
DSPS ₁	2.76	13.83	7.74	17.90	14.35
$DSPS_1 + DSPS_2$	2.58	11.14	6.89	14.33	11.59
DSS ₁ [5]	2.62	14.72	7.89	19.07	15.23
$DSS_1 + DSS_2$ [5]	2.61	11.95	7.33	15.33	12.40
FBANK ₄₀ [4]	2.65	13.75	7.96	16.89	13.89
FBANK ₆₀ [4]	2.54	13.06	8.33	17.08	13.69
fbank ₈₀ [4]	2.69	12.04	8.03	16.19	12.86
fbank ₁₀₀ [4]	2.52	12.60	7.60	16.52	13.20

* Squared modulus \rightarrow Helps! \rightarrow 0.9, 0.8% abs

* Second-order features \rightarrow Helps! \rightarrow 2.8, 2.8% abs

E. Loweimi

Experimental Results – Aurora-4 Multi (1)

FEATURES	A ₁	B_{2-7}	C ₈	D ₉₋₁₄	AVG ₁₋₁₄
DSPS ₁	2.97	5.88	6.71	15.96	10.05
$DSPS_1 + DSPS_2$	2.73	5.20	4.73	14.15	8.83 🗸
DSS ₁ [5]	2.99	5.69	6.56	15.95	9.96
$DSS_1 + DSS_2$ [5]	2.86	5.45	6.11	15.08	9.44 \bullet
FBANK ₄₀ [4]	3.06	6.08	7.10	16.09	10.23
fbank ₆₀ [4]	2.90	5.72	6.46	15.65	9.83
fbank ₈₀ [4]	2.88	5.58	5.92	15.22	9.55
fbank ₁₀₀ [4]	2.69	5.33	5.74	15.26	9.43

- * Squared modulus [S₁] \rightarrow WER \rightarrow Slight WER increase
- * Second-order features \rightarrow Helps! \rightarrow 1.2, 0.5% abs

Experimental Results – Aurora-4 Multi (2)

- Multi-Resolution is useful but should not be overdone!
 - $Q = \{1, 4, 8, 13\}$ is the worst!
 - Best multi-resolution results $\rightarrow Q = \{4,13\}$
- Comparable results with other complicated DNNs

ARCHITECTURE	CNN DEPTH	AVG_{1-14}		
DSPS ₁ + DSPS ₂ (MULTI-RESOLUTION SCATTERING)				
$Q = \{8\}$	3	8.83		
$Q = \{1, 4, 13\}$	3	8.76		
$Q = \{1, 4, 8, 13\}$	3	8.94		
$Q = \{4, 13\}$	3	8.64		
FBANK BASELINES				
FMLLR + MLP	-	10.21		
VD6CNN [23]	6	10.34		
VD10CNN [23]	10	8.81		
m-oct cnn [24]	15	8.31		

Wrap-up

- Deep scattering spectrum (DSS) is a cascade of wavelet (linear) and modulus (non-linear) transforms
- Advantages: translation invariant, Lipschitz stable & preserves information
- First-order coefficients are similar to filterbank features
- [Novelty] Higher-order aims at recovering lost info in lower level; sparse
 - Usually only first (S_1) and second (S_2) orders are used
- DSS has similar hierarchical structure to CNNs but involves no learning
- Frequency scattering and multi-resolution time scattering are helpful
- Performance on ASR task: comparable to classic features + marginal gain
- Suggestions: learn S_1 via parametric CNNs, use CNN+group for S_2

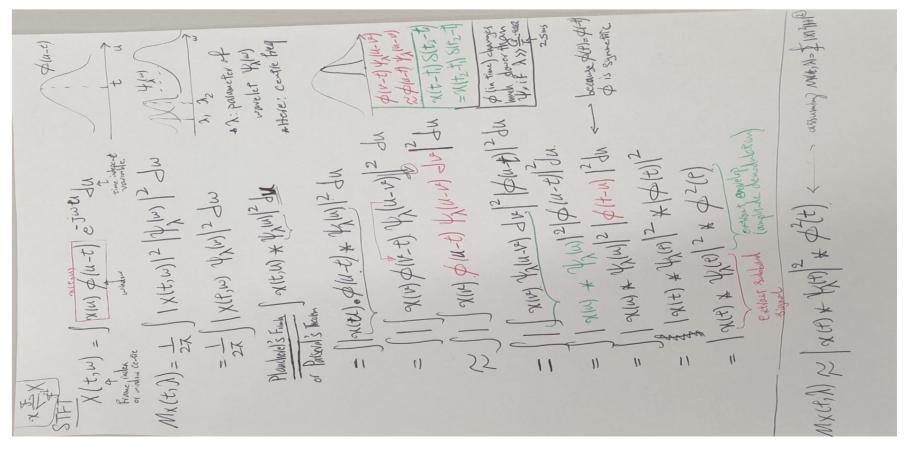
That's It!

- Thanks for Your Attention!
- Q/A

- Appendix A: Proof of $Mx(t,\lambda_i) = \int_{\Omega} |X(t,\omega)|^2 |H(\omega;\lambda_i)|^2 d\omega$
- Appendix <u>B</u>: DSS vs ... $\approx |x(t) * h(t; \lambda_i)|^2 * \phi^2(t)$

E. Loweimi

Appendix A: Proof



Appendix B: DSS vs Modulation Spectrum

Speech Communication 25 (1998) 117-132

Robust Speech Recognition Using the Modulation Spectrogram

Brian Kingsbury, Nelson Morgan and Steven Greenberg

