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Outline
● Deep Scattering Spectrum (DSS)
● IBM+JHU, ICASSP 2014
● IBM+JHU, INTERSPEECH 2014
● KCL+CSTR, INTERSPEECH 2020
● Wrap-up
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Goal: Construct a representation ...
● … preserves info while remains invariant and stable to 

variabilities within class, for example ...
– Stable to (small) deformation, e.g. time warping

– Invariant to geometric transformations, e.g. translation, scale
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● Time-Frequency Analysis
● Wavelet Transform
● Amplitude Demodulation
● Time-warping Deformation
● Lipschitz Stability

Detour
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Wavelet Transform
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Wavelet Transform
● Wavelet is a filterbank, defined in time domain
● Conv. with each filter (ψ

λ) returns subband signal, xλ(t)

● xλ(t) is complex; | . | → extract envelop
– Assume xλ(t) is an analytic signal
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Amplitude Demodulation
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Time-warping Deformation (TWD)
● Variable time-shift

– Definition: x(t) = xτ(t - τ(t))

– Example: τ(t) = ε t 
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Lipschitz Stability
● Stability: small deformation in x ==>> small change in Φ(x)

– Deformation size measured by Supt |   τ(t)|

– Change size → Euclidean distance

● Φ(x) is Lipschitz stable to deformation xτ(t) if a C > 0 exists s.t. 

● The lower the C, the higher the stability 

Δ
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Spectrogram (|X(t,ω)|)
● Invariant to time-shift (c) [:-)|
● Unstable to TWD [:-(|

– Larger ω→Larger Δω => No C! 
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Mel-Spectrogram

● H(ω; λi): frequency response of ith filter (λi = centre frequency)

● Role: frequency averaging + subsampling ≈ avg pooling
– Makes Mx(t; λi) Lipschitz stability (unlike |X(t,ω)|)  [:-)|
– Brings about irreversible information loss  [:-(|  

Plancherel 
Theorem
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Proof in 
Appendix A
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Scattering Transform (1)
● A cascade of Wavelet transforms (linear) and modulus 

(non-linear)

ψ
λ1 | . | ψ

λ2 | . | . . . ψ
λm | . |

input
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Sm
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Scattering Transform (2)
● A cascade of Wavelet (Ψλ(t)) transforms and modulus 

(| . |)

1st order

2nd order

0th order

Mth order
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Scattering Transform (3)
● A cascade of Wavelet (Ψλ(t)) transforms and modulus
● ϕ(t): low-pass filter → averaging → stability + information loss

1st order

2nd order

0th order

Mth order
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Role of Scattering Coefficients
● First order scattering coef. (S1) ≡ filterbank energies
● Sm aims at compensating for lost info in Sm-1

● Information loss … due to low-pass filtering ...
– Fast temporal transients (high freq.) info, e.g. attack, is lost!

 

Solution: Another transform with a higher time resolution

… should better localise the transients in time
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Role of high order Scattering Coef.
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Role of high order Scattering Coef.
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Role of high order Scattering Coef.
● Ψλ2 should have a smaller Δt than Ψλ1

– Ψλ2’s filters should be narrower in time domain

● Smaller Q → filters wider in freq domain → narrower in time
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Role of high order Scattering Coef.
● Ψλ2 should have a smaller Δt than Ψλ1

– Ψλ2’s filters should be narrower in time domain

● Ψλ is in a constant-Q filterbank (Q ≡ knob)
✔ Q2 < Q1
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Sparsity of Higher Order Coef
● Higher order coef are sparse (mostly zero)

● Non-zero if ψλ1 and ψλ2 overlap

● Only compute non-negligible coefficients ...

Window
Length
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Dimension of Scattering Coef.
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Energy (?) of Scattering Coef.
● For 25ms signal decomposition ...

– 94.5% of energy is in S1, ~ 4.8% in S2

● By frame extension energy of high order Coef. increases
– Not useful for speech, but may be music
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Normalising Scattering Coef.
● Normalise order m with order m-1 
● Goal: improve invariability, e.g. to channel distortion

Silence
detection
threshold
(to avoid x/0)
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Normalising Scattering Coef.
● Normalise order m with order m-1 
● Goal: improve invariability, e.g. to channel distortion

Holds only when H(ω) is 
approximately constant 
over support of ψ(ω;λ)

 17/42E. Loweimi



  

Frequency Scattering (1)
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Frequency Scattering (2)
● Similar to freq. avg. by setting higher order MFCCs to 0
● Provides stability to frequency transposition

 19/42E. Loweimi

#filters = 40 #filters = 40;   MFCC = 13



  

Frequency Scattering (2)
● Similar to freq. avg. by setting higher order MFCCs to 0
● Provides stability to frequency transposition
● Only the first-order is used, with small Q (e.g. Q=1)
● Filters are centred at quefrency λ 
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Experimental Results

* GTZAN: Music Genre Classification
* TIMIT: phone classification
* Classifier: SVM with Gaussian Kernel
* Adapt → multi-resolution: Q=1, 8

● Second order helps
– Especially for music (Y?)

 

● Third order may slightly help
– Costly because of dimension

 

● Freq. scattering helps

order

Sturm, 2012, “An Analysis of the GTZAN Music Genre Dataset”
 “…  5% … exact duplicates, 10.8% is mislabelled …”
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https://arxiv.org/pdf/1306.1461.pdf


  

Properties of Scattering Transform
● Similar to CNNs (hierarchical) but involves no learning

– Learns a general (not task-specific) representation; interpretable

● Translation-invariant, stable to deformation, preserves info
● Some similarities to physiological models (cochlea, const-Q)
● Energy conservative and contractive mapping
● Has approximate and non-trivial inverse transformation
● Poorer frequency resolution than STFT
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This paper investigates ...
● Usefulness of ... 

– DSS for TIMIT phone recognition
– Multi-resolution DSS

 

● Optimal architecture for ... 
– Processing S1 and S2, simultaneously
– Multi-resolution DSS
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Experimental Setup
● Task: TIMIT phone recognition
● Baseline: 40-dim log-mel fbank + Δ + ΔΔ
● DNN: 2 x CNN (256 filters) →3 x FC (1024)
● Output/Target: CI (147) and CD (2400)
● MVN for log-Mel and S1; MN for S2

– Scatter transfer operator act like var-norm (?)

● Delta only for log-mel and S1; not S2 [not beneficial]
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Experimental Results – TIMIT
● PERs of log-Mel and S1 r similar

– TIMIT, 0.3, statistically significant?
   

● Using S2 may help, but NOT 
consistently! 
– Why? Functionality overlap …

● Δ and S2? ΔΔ and S3?
   

● ReLU and Regularisation help
* CI: context-independent (147)
* CD: context-dependent (2400)
* Regularisation: MaxNorm and Dropout
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Multi-Resolution Approach
● Use multiple filterbanks with various Qs

– ONLY for S1; S2  ↔ always Q=1
  

● Advantage: complementary modelling
– Small Q → better time resolution

– Large Q → better frequency resolution
  

● Optimal architecture to combine???

Q1 Q2 Q3 Q Q Q
S1S1S1

S2S2S2
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DNN = ???



  

Architecture for Multi-Resolution
● Multi-resolution ≡ Various Qs

● Process S1 with (2x) ConvL

● Process S2  with FC*
– S2 is sparse + Limited local corr

– Not optimal for ConvL
● Too short filters

Q1 Q2 Q3 Q Q Q

ConvL ConvL ConvL

FC*ConvL ConvL ConvL

Concatenate

FC

Softmax

3x

S1S1S1
S2S2S2
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G1 G2



  

Multi-Resolution -- TIMIT -- CI
● Multi-resolution helps!

 

● Multi-resolution for S1 (G1) 
is more helpful than S2

– 0.6 vs 0.2 
 

● Optimal width for FC* is 128
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* G1: multi-resolution S1 
* G2: multi-resolution S2

* HU: #hidden units of FC*



  

Multi-Resolution -- TIMIT -- CD
● Using S2 helps

– PER: 18.7 → 17.9 [0.8]
– For CI: 19.0 → 18.8 [0.2]

● Multi-Resolution helps
– PER: 17.9 → 17.4 [0.5]
– For CI: 18.8 → 18.2 [0.6]
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* G1: multi-resolution S1 
* G2: multi-resolution S2

* HU: #hidden units of FC*



  



  

This paper investigates ...
● LVCSR (BN: 50h; BN: 430h)
● Multi-resolution + frequency scattering effect
● Dimensionality reduction
● Speaker adaptation
● Sequence training
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Experimental Results
● S1(+S2) is comparable to log-mel!
● S2 slightly helps!

– WER: 16.0 → 15.9

● Frequency scattering helps!
– WER: 15.9 → 15.5

● Gain carries over to larger tasks

English Broadcast News, 50h
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Multi-Resolution Approach
● Multiple filterbanks with different Qs

● Various Qs ONLY for S1

– For S2, always Q=1

● S1 modelled by ConvL

● S2 modelled by FC 

– S2 is sparse; Limited local corr
● Not optimal for ConvL

Q1 Q2 Q3 Q Q Q

ConvL ConvL ConvL

FCConvL ConvL ConvL

Concatenate

FC

Softmax

3x

S1S1S1
S2S2S2
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Experimental Results – Multi-Resolution
● Q=8 is optimal

– Consistent with human system
  

● Multi-resolution helps
– Best Q=(8,13)

  

● Time+Frequency scattering helps
– Not if Q is too low!
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Dimensionality Reduction of S1 & S2

● Dim. Reduction methods ...
– S2 → PCA & LDA
– S1 → Linear bottleneck

 

● Conclusion
– Identical results with a 

smaller network
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Speaker Adaptation
● VTLN helps!

– ONLY for S1 (S2 unwarped)
  

● fMLLR & i-vector help!
– Extra input stream to the FC

● Do not obey locality

– More effective than VTLN!
  

● Using 2xConv Layers help!
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Experimental Results
● Sequence training (after CE) 

improves the results
 

● Gain carries over to larger 
data (50h → 430h)

● Comparing multiQ DSS with 
log-mel; is it fair?

English Broadcast News, 50h

English Broadcast News, 430h

What are m1 and m2?
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“Log-Mel+MFCC”  vs  DSS
● S1 and log-mel have identical 

WER!
● S2 slightly helps (15.4 → 15.2)
● Frequency scatter slightly helps 

(15.2 → 15.0)
● Frequency scatter effect is 

similar to MFCC
● MultiQ “log-mel+MFCCs” match 

DSS with all bells & whistles!
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This paper ...
● Investigates usefulness of DSS (S1 and S2) for 

robustness ASR
 

● Replaces modulus with squared modulus non-linearity
 

● Comparison with similar architectures
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Replace Modulus with Squared Modulus (1)

● Amplifies strong coefficients
– may improve robustness + better speech/noise separation

● Amplifies sparsity

 37/42E. Loweimi



  

Replace Modulus with Squared Modulus (2)

Standard DSS
(| . |)

Proposed
(| . |2)

Visualisation via 
t-SNE

| . |2 is less variant to the additive noise (Guassian) at different SNRs.
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Visualisation via t-SNE                                                                       Clean    Noisy



  

Experimental Results – Aurora-4
Clean

* Squared modulus → Helps!  → 0.9, 0.8% abs

* Second-order features → Helps!  → 2.8, 2.8% abs

 39/42E. Loweimi

Very good WER
 for this task!



  

Experimental Results – Aurora-4
Multi (1)

* Squared modulus [S1] → WER → Slight WER increase
   

* Second-order features → Helps!  → 1.2, 0.5% abs

 40/42E. Loweimi



  

Experimental Results – Aurora-4
Multi (2)

● Multi-Resolution is useful but 
should not be overdone!
– Q = {1,4,8,13} is the worst!

– Best multi-resolution results 
→ Q = {4,13}
 

● Comparable results with 
other complicated DNNs 
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Wrap-up
● Deep scattering spectrum (DSS) is a cascade of wavelet (linear) and 

modulus (non-linear) transforms
● Advantages: translation invariant, Lipschitz stable & preserves information
● First-order coefficients are similar to filterbank features
● [Novelty] Higher-order aims at recovering lost info in lower level; sparse

– Usually only first (S1) and second (S2) orders are used

● DSS has similar hierarchical structure to CNNs but involves no learning
● Frequency scattering and multi-resolution time scattering are helpful 
● Performance on ASR task: comparable to classic features + marginal gain
● Suggestions: learn S1 via parametric CNNs, use CNN+group for S2
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That’s It!

● Thanks for Your Attention!
● Q/A

  
● Appendix A: Proof of

● Appendix B: DSS vs ...

E. Loweimi



  

Appendix A: Proof
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Appendix B: DSS vs Modulation Spectrum

 A2 / 2E. Loweimi

Speech Communication 25 (1998) 117-132
  

Robust Speech Recognition Using the Modulation Spectrogram
 

Brian Kingsbury, Nelson Morgan and Steven Greenberg

Modulation
Spectrogram
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