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Outlines
● Pros/Cons of CNNs
● CapsNet aims to solving two problems ...
● Routing mechanism
● Experimental Results
● Challenges
● Wrap-up
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Convolutional Neural Networks (CNN)
● Main components:

– Feature detectors, interleaved with subsampling layers

● CNNs work best for recognition 
– Weight sharing
– Sparsity of connections

CNNs afford some translation invariance to small changes
Replicating the feature detectors (learned knowledge) across image

Subsampling (max-pooling)
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Convolutional Neural Networks (CNN)
● Main components:

– Feature detectors, interleaved with subsampling layers

● CNNs work best for recognition 
– Weight sharing
– Sparsity of connections

● CNNs afford some translation invariance to small changes

– Replicating the feature detectors (learned knowledge) across image
– Max-pooling
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CNNs Problems (1)
● Picasso Problem → Right parts in wrong position

– Mere existence of parts means whole
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CNNs Problems (1)
● Picasso Problem → Right parts in wrong position

– Mere existence of parts means whole
● OK-ish for classification, BAD for segmentation/localisation 
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CNNs Problems (2)
● No built-in mechanism to extrapolate their understanding 

(internal representation) to radically new viewpoints

4/40E. Loweimi



  

CNNs Problems (2)
● No built-in mechanism to extrapolate their understanding 

(internal representation) to radically new viewpoints
– Only can deal with this through a lot of training data
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Max-pooling is the Culprit ...
● Max-pooling along with replicating filters (knowledge) leads 

to some translation/rotation invariance

Most active neuron are routed to the higher level ...
Without considering the higher level activities (hierarchy)

 

Discard information about precise position and relative 
spatial relationships
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Max-pooling is the Culprit ...

“The pooling operation used in 
CNNs is a big mistake and the fact 
that it works so well is disaster.”

“Internal data representation of a CNN does not 
take into account important spatial hierarchies 
between simple and complex objects.”
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Computer Graphics
● Entities + Instantiation Parameters → Synthetic Images

– Entities: basic shapes

– Instantiation parameters: pose (translation, rotation, etc. )

Computer
Graphics

Entity 1

Entity 2

Entity N

.

.

.

Pose 1 Pose 2

. . .

Pose N
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Inverse Computer Graphics
● Image → Entities + Instantiation Parameters

Inverse
Computer
Graphics

{Entity 1, pose 1}

.

.

.

{Entity 2, pose 2}

{Entity N, pose N}
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Inverse Computer Graphics
● Image → Entities + Instantiation Parameters

Inverse
Computer
Graphics

{Entity 1, pose 1}

.

.

.

{Entity 2, pose 2}

{Entity N, pose N}

Hinton claim: Human brain performs some inverse graphics.
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Some Definitions
● Invariant

– A property that does not change after some transformation

● Equivariant
– A property that changes predictably under transformation

● Image transformations
– Shift (translation), scale (size), rotation (orientation), 

reflection (mirror)
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Note that ...
● Invariant
● Equivariant
● Image transformations
● Effect of image transformations on ...

– Labels → invariant
– Instantiations parameters → equivariant
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Hinton: Human visual system imposes some coordinate 
frames in order to represent shapes (after Irvin Rock)

http://ycpcs.github.io/cs470-fall2014/labs/lab07-2.html
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Hinton: Human visual system imposes some coordinate 
frames in order to represent shapes (after Irvin Rock)

Diamond Square

http://ycpcs.github.io/cs470-fall2014/labs/lab07-2.html
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  Dock or Rabbit?

http://ycpcs.github.io/cs470-fall2014/labs/lab07-2.html

Hinton: Human visual system imposes some coordinate 
frames in order to represent shapes (after Irvin Rock)
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Tetrahedron Jigsaw Puzzle
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Tetrahedron Jigsaw Puzzle

1. Find intrinsic frame of reference
    – Imagine the whole

2. Build part-whole maps using
    – frame of reference
    – contextual info

E. Loweimi 9/40



  



  

Invariance and Equivalence

Page 12

– Label → invariance
  

– Pose (Instantiation parameters) → equivalence
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Invariance and Equivalence

Page 12

– Label → invariance
  

– Pose (Instantiation parameters) → equivalence
 

* No built-in disentanglement mechanism in CNNs 
– A lot of data is required for dealing with pose change.
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● Disentangling learning mechanisms of invariant 
(label) and equivariant (pose) properties
 

● Smarter way for information flow from lower 
layers to the higher layers in the hierarchy

Capsule Networks aim at 
solving two problems ...
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Capsule and CapsNet
● A set of neurons that collectively produce an activity vector
● Each capsule detects/represents an entity 

– Length: probability of presence/existence
– Orientation: instantiation parameters, state, properties

 

CapsNets //40 CN
Scalar feature detectors r replaced with vector-output capsules

//40-pooling //40 replaced with routing/40/40-agreement

12/40E. Loweimi
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Capsule and CapsNet
● A set of neurons that collectively produce an activity vector
● Each capsule detects/represents an entity 

– Length: probability of presence/existence
– Orientation: instantiation parameters, state, properties

 

● CapsNets is similar to CNN with two differences
– Scalar-output nodes are replaced with vector-output capsules
– Max-pooling is replaced with routing-by-agreement
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CapsNet Approach to 
Invariance and Equivalence Properties

Page 12

– Entity’s presence probability: invariance
  

– Entity’s pose (Instantiation parameters) equivalence
  

– Built-in separation mechanism

4 4
4
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Dynamic Routing 
via

Routing-by-agreement



  

Routing-by-Agreement – Steps

0) Outputs of capsules in lower layer (ui) are available

 For capsule j in higher layer, make a prediction (ûj|i)

 Compare the prediction with actual output (vj) 

 Based on ûj|i & vj similarity, adjust the connection 
strength (routing)
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 Based on ûj|i & vj similarity, adjust the connection 
strength (routing)

14/40E. Loweimi



  

Routing-by-Agreement – Steps

0) Outputs of capsules in lower layer (ui) r available

1) For capsule j in higher layer, make a prediction (ûj|i)
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Routing-by-Agreement – Steps

0) Outputs of capsules in lower layer (ui) r available

1) For capsule j in higher layer, make a prediction (ûj|i)

2) Compare the prediction with actual output (vj) 

3) Based on ûj|i & vj similarity, adjust the connection 
strength (routing)

4) Go to (2), if not converged

14/40E. Loweimi



  

Routing-by-Agreement – Equations

û
j|i
: Prediction of i about j using W

ij

Squashing Non-linearity

c
ij
: coupling coef. Between i and j

s
j
: pre-activation of j

v
j
: activation of j

b
ij
: logit (similarity)

iteration

15/40E. Loweimi
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Routing-by-Agreement – WorkFlow 
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Routing-by-Agreement – Algorithm

– c
ij
 is learned by dynamic routing in forward path

  

– W
ij
 is learned by backprop in backward path
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Conventional NN vs CapsNet

Input/Output Vector/Scalar Vector/Vector

Training Backpropagation
Dynamic Routing & 
Backpropagation

Non-linearity
ReLU, Tanh, etc.

CapsulesNeurons

Pre-activation

scalar2scaler vector2vector
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Routing-by-Agreement

Intuitions



  

Routing-by-Agreement – Intuition (1)

v
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Routing-by-Agreement – Intuition (1)

v
j
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k
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û
k|10

.

.

.

Vote (prediction) plane 

.

.

.

.

.

.

u
1

u
i

u
P



  

Routing-by-Agreement – Intuition (1)
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→ larger coupling coefficients,c
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Routing-by-Agreement – Intuition (2)
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Coincidence filtering: Outliers are filtered out (small c
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Routing-by-Agreement – Note

v
j

v
k

Votes distribution in vote plane, i.e. û
j|i 

and û
k|i

, are different because although 

u
i
 is the same, W

ij
 and W

ik
 are different.
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Routing-by-Agreement – Intuition (3)
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Routing-by-Agreement – Iterations
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Routing-by-agreement to done greedily across layers ... 
    – When iterations between blue-green finished, move to green-red. 22/40
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Routing-by-Agreement – Intuition (3)
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Capsule Network in NIPS 2017



  

Capsule Network in NIPS 2017

reshape(-1, capsule_size)

W/out max-pooling

Primary capsule size
DigitCaps size
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Capsule Network in NIPS 2017

W/out max-pooling

reshape(-1, capsule_size)
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Reconstruction Network (Decoder) 

– Target capsule is kept; rest is 0 masked
 

– Reconstruction from a vector → ~ auto-encoder
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Unsupervised Reconstruction Loss

X
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Loss Function
● Loss function  =  supervised  +  α  unsupervised

Supervised → classification
margin loss

Unsupervised → Reconstruction
MSE

Down-scaled by α = 5e-4 ==>> supervised is dominant

28/40E. Loweimi



  

Loss Function
● Loss function  =  supervised  +  α  unsupervised
● Supervised → classification

– margin loss

● Unsupervised (decoder) → Reconstruction
– MSE
– Down-scaled by α = 5e-4 

● Adjusting scales + making the supervised part dominant
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Supervised Margin Loss

29/40E. Loweimi

T
k
 = 1 if (digit of class k is present) else 0



  

Supervised Margin Loss

Z = T
k
 X + (1-T

k
) Y

    – T
k
 \in (0,1) → weighted mean

    – T
k
 \in {0,1} → Z = X if T

k
==1 else Y

29/40E. Loweimi
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k
 = 1 if (digit of class k is present) else 0



  

Supervised Margin Loss

* Hinge (max-margin) loss: 
  

    – max(0, m+-x)
        ==>>  min loss: x > m+
  

    – max(0, x-m-)
        ==>> min loss: x < m-
  

     – m+=0.9, m-=0.1

 
misclassification  Margin Violation

30/40E. Loweimi



  

Supervised Margin Loss

For minimum loss
    – If T

k
 == 1: ‖v

k
‖ > m+

  

    – If T
k
 == 0: ‖v

k
‖ < m-

 
misclassification  Margin Violation
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Supervised Margin Loss

* λ = 0.5
    – down-weighs T

k
= 0 case

    – Purpose: Numerical stability

31/40E. Loweimi



  

Experimental Results



  

CapsNet Classification Error
Trials for STD: 3 Table 1 
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CapsNet Classification Error

 * Routing iterations: 3 to 5 is enough ← computational cost + overfitting
 

* Adding reconstruction term to loss is useful.

Trials for STD: 3 Table 1 

32/40E. Loweimi

STOA: 0.21%



  

CapsNet Logit Change (MNIST)

After 500 epochs, average 
change in logit (b

ij
) is stabilised.

3 iterations of routing is enough. Ave Diff(b
ij
) of last two epochs
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CapsNet Training Loss (CIFAR 10)

3 iterations of routing optimise 
the loss faster and converges 
to a lower loss at the end.

More routing iterations increases 
the network capacity → overfitting
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CapsNet Error on CIFAR 10

● CapsNet: 10.6%
– About what standard CNNs achieved 

when first tried 
● Zeiler and Fergus 2013 → 19.4, 15.1%

 

– State-of-the-art: 3.47% (Graham 2015)
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CapsNet Error on Small NORB

● CapsNet error: 2.7%
– Best task for CapsNet (Appendix B)

– On-par with state-of-the-art (2.56%)
● Ciresen et al., 2011

– New CapsNet with EM routing, ICLR 2018 → 1.4%
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CapsNet Reconstruction

Reconstruction from the target capsule (~ auto-encoder)

(l,r,p) = (target label, prediction, reconstruction target)

Correct Classification Misclassification
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CapsNet Reconstruction

The model preserves many of the details while smoothing the noise.

36/40E. Loweimi

(l,r,p) = (target label, prediction, reconstruction target)

Correct Classification Misclassification



  

Effect of Dimension Perturbation on Recon.
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Effect of Dimension Perturbation on Recon.
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Tweak value 

Each dimension of capsule learns to span the space of variation 
of an instantiation parameter, e.g. scale, translation, thickness 37/40



  

Effect of Dimension Perturbation on Recon.
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MultiMNIST Reconstruction

Red and Green are reconstructed digits (yellow: overlap)

3 routing iterations
● MultiMNIST

– Each X has two labels (l1,l2)

● L: (l1,l2)

– Target classification labels

● R: (r1,r2)

– Target reconstruction label

● P: predicted label

● *: reconstruction from a digit that is 
neither the label nor the prediction.
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MultiMNIST Reconstruction

Red and Green are reconstructed digits (yellow: overlap)

3 routing iterations

CapsNet successfully deals 
with overlapping objects.

38/40E. Loweimi



  

Challenges Ahead CapsNet
● Not state-of-the-art in tasks like CIFAR 10 (good start!)
● Not tested yet on larger databased (e.g. ImageNet) due 

to technical issues
– Slow training → Routing iterations
– Memory problem

● A CapsNet cannot see two very close identical objects
– “crowding” ↔ similar to human vision system
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Wrap-up (1)
● Each capsule is a group of neurons

– Expand artificial scalar neuron to vector

● Capsule represents an entity through a vector (inverse graphics)
– Magnitude → probability of the entity presence → invariant
– Phase → state of the entity → equivariant

● Dynamic routing: how capsules of two layers should communicate
● Parameters & Learning

– Coupling coefficients (cij) → routing-by-agreement

– Affine transformations (Wij) →backpropagation
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Wrap-up (2)
● Advantages:

– Built-in disentanglement between entity’s pose (equivariant) and 
presence probability (invariant)

– Dynamic hierarchical modelling, smarter than static max-pooling
– Requires less data, higher robustness (viewpoint), interpretability

● Challenges: 
– Technical difficulties in scaling up (e.g. memory problem)
– Performance is still not in the state-of-the-art level

● e.g. CIFAR 10 (Error: 10.6%  vs  3.47%)
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That’s it!
● Thanks for Your Attention
● Q/A
● Appendices

– Appendix A: MNIST Database & its variants 
– Appendix B: (Small) NORB Database



  

MNIST Database

LeNet-5 Architecture
A1 / 2E. Loweimi



  

MNIST Database
● Yan LeCun et al., 1998
● Handwritten digits

– 28 x 28
– Training: 60 k
– Test: 10 k

● Variants
– affMNIST 
– MultiMNIST
– EMNIST: letters+digits 

● train: 240k, test: 40k

E. Loweimi



  

(Small) NORB Database
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(Small) NORB Database
● Y. LeCun et al., 2004
● 3D object recognition task

– 96 x 96 images of 50 toys, 5-generic categories
● Animal, human, airplane, car, truck

● Objects where imaged by 2 cameras under ...
– 6 Lighting conditions, 9 elevations, 18 azimuths

● Download
– NORB → 29160 images
– Small NORB→ 24300 images

● Normalised object sizes and uniform background

A2 / 2E. Loweimi

https://cs.nyu.edu/~ylclab/data/norb-v1.0/
https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
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