

Dynamic Routing Between Capsules

Sara Sabour, Nicholas Frosst, and Geoffrey Hinton

NIPS 2017

Erfan Loweimi

Centre for Speech Technology Research (CSTR) University of Edinburgh 23, Apr., 2019

#Citations ~ 21, 04, 2019

Capsule Papers ...

https://www.cs.toronto.edu/~fritz/absps/transauto6.pdf ▼ by GE Hinton - Cited by 356 - Related articles Three capsules of a transforming auto-encoder that models translations. Each capsule in the figure has 3 recognition units and 4 generation units. The weights	2011
[PDF] Dynamic Routing Between Capsules - NIPS Proceedings https://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf ▼ by S Sabour - 2017 - Cited by 551 - Related articles Dynamic Routing Between Capsules. Sara Sabour. Nicholas Frosst. Geoffrey E. Hinton. Google Brain. Toronto. {sasabour, frosst, geoffhinton}@google.com.	NIPS 2017
[PDF] matrix capsules with em routing - OpenReview https://openreview.net/pdf?id=HJWLfGWRb ▼ by GE Hinton - 2018 - Cited by 101 - Related articles MATRIX CAPSULES WITH EM ROUTING. GeoffreyHinton, SaraSabour, NicholasFrosst. Google Brain. Toronto, Canada. {geoffhinton, sasabour, frosst}@google.	ICLR 2018

Dynamic Routing Between Capsules

[PDF] Dynamic Routing Between Capsules - NIPS Proceedings

https://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf ▼
 by S Sabour - 2017 - Cited by 557 - Related articles
 Dynamic Routing Between Capsules. Sara Sabour. Nicholas Frosst. Geoffrey E. Hinton. Google
 Brain. Toronto. {sasabour, frosst, geoffhinton}@google.com.

Dynamic Routing Between Capsules

[PDF] Dynamic Routing Between Capsules - NIPS Proceedings

 https://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf ▼

 by S Sabour - 2017
 Cited by 557 - Related articles

 Dynamic Routing Between Capsules. Sara Sabour. Nicholas Frosst. Geoffrey E. Hinton. Google

 Brain. Toronto. {sasabour, frosst, geoffhinton}@google.com.

_ 23, 4, 2019

Outlines

- Pros/Cons of CNNs
- CapsNet aims to solving two problems ...
- Routing mechanism
- Experimental Results
- Challenges
- Wrap-up

Convolutional Neural Networks (CNN)

- Main components:
 - Feature detectors, interleaved with subsampling layers
- CNNs work best for recognition
 - Weight sharing
 - Sparsity of connections

Convolutional Neural Networks (CNN)

- Main components:
 - Feature detectors, interleaved with subsampling layers
- CNNs work best for recognition
 - Weight sharing
 - Sparsity of connections
- CNNs afford some translation invariance to small changes
 - Replicating the feature detectors (learned knowledge) across image
 - Max-pooling

CNNs Problems (1)

- **Picasso Problem** \rightarrow Right parts in wrong position
 - Mere existence of parts means whole

CNNs Problems (1)

- Picasso Problem \rightarrow Right parts in wrong position
 - Mere existence of parts means whole
 - **OK**-ish for classification, **BAD** for segmentation/localisation

CNNs Problems (2)

• No built-in mechanism to extrapolate their understanding (internal representation) to radically new viewpoints

CNNs Problems (2)

- No built-in mechanism to extrapolate their understanding (internal representation) to radically new viewpoints
 - Only can deal with this through a lot of training data

Max-pooling is the Culprit ...

Max-pooling along with replicating filters (knowledge) leads to some translation/rotation invariance

Max-pooling is the Culprit ...

Along with replicating filters (knowledge) leads to some translation/rotation invariance

Most active neuron are routed to the higher level ...
Without considering the higher level activities (hierarchy)

Max-pooling is the Culprit ...

"The pooling operation used in CNNs is a big mistake and the fact that it works so well is disaster."

"Internal data representation of a CNN does not take into account important spatial hierarchies between simple and complex objects."

Dynamic Routing Between Capsules

rey E. Hinton

Nicholas Fross

Computer Graphics

- Entities + Instantiation Parameters \rightarrow Synthetic Images
 - Entities: basic shapes
 - Instantiation parameters: pose (translation, rotation, etc.)

Inverse Computer Graphics

• Image \rightarrow Entities + Instantiation Parameters

Inverse Computer Graphics

• Image → Entities + Instantiation Parameters

Hinton claim: Human brain performs some inverse graphics.

Some Definitions

- Invariant
 - A property that <u>does not change</u> after some transformation
- Equivariant
 - A property that <u>changes predictably</u> under transformation
- Image transformations
 - Shift (translation), scale (size), rotation (orientation), reflection (mirror)

Note that ...

- Invariant
- Equivariant
- Image transformations
- Effect of image transformations on ...
 - Labels \rightarrow invariant
 - Instantiations parameters \rightarrow equivariant

Hinton: Human visual system imposes some coordinate frames in order to represent shapes (after Irvin Rock)

http://ycpcs.github.io/cs470-fall2014/labs/lab07-2.html

8/40

Hinton: Human visual system imposes some coordinate frames in order to represent shapes (after Irvin Rock)

Hinton: Human visual system imposes some coordinate frames in order to represent shapes (after Irvin Rock)

http://ycpcs.github.io/cs470-fall2014/labs/lab07-2.html

Dock or Rabbit?

Tetrahedron Jigsaw Puzzle

Tetrahedron Jigsaw Puzzle

1. Find intrinsic frame of reference – Imagine the whole

- 2. Build part-whole maps using
 - frame of reference
 - contextual info

Invariance and Equivalence

Invariance and Equivalence

Page 12

Foundations and Trends[®] In Machine Learning 2:1 (2009)

> Learning Deep Architectures for Al Yoshua Bengio

- Label \rightarrow invariance
- Pose (Instantiation parameters) \rightarrow equivalence
- * No built-in disentanglement mechanism in CNNs – A lot of data is required for dealing with pose change.

Capsule Networks aim at solving two problems ...

• Disentangling learning mechanisms of invariant (label) and equivariant (pose) properties

• Smarter way for information flow from lower layers to the higher layers in the hierarchy

Capsule and CapsNet

- A set of neurons that collectively produce an activity vector
- Each capsule detects/represents an entity
 - Length: probability of presence/existence
 - Orientation: instantiation parameters, state, properties

Capsule and CapsNet

- A set of neurons that collectively produce an activity vector
- Each capsule detects/represents an entity
 - Length: probability of presence/existence
 - Orientation: instantiation parameters, state, properties
- CapsNets is similar to CNN with two differences
 - Scalar-output nodes are replaced with vector-output capsules
 - Max-pooling is replaced with *routing-by-agreement*

CapsNet Approach to Invariance and Equivalence Properties

Dynamic Routing via Routing-by-agreement

Routing-by-Agreement – Steps

0) Outputs of capsules in lower layer (\mathbf{u}_i) are available

Routing-by-Agreement – Steps

0) Outputs of capsules in lower layer (\mathbf{u}_i) r available 1) For capsule *j* in higher layer, make a prediction $(\hat{\mathbf{u}}_{j|i})$

Routing-by-Agreement – Steps

- **0)** Outputs of capsules in lower layer (\mathbf{u}_i) r available
- 1) For capsule *j* in higher layer, make a prediction $(\hat{u}_{j|i})$
- 2) Compare the prediction with actual output (v_j)

Routing-by-Agreement – Steps

- **0)** Outputs of capsules in lower layer (\mathbf{u}_i) r available
- 1) For capsule *j* in higher layer, make a prediction $(\hat{u}_{j|i})$
- 2) Compare the prediction with actual output (v_j)
- 3) Based on $\hat{u}_{j|i} \& \mathbf{v}_{j}$ similarity, adjust the connection strength (routing)

Routing-by-Agreement – Steps

- 0) Outputs of capsules in lower layer (**u**_i) r available
- 1) For capsule *j* in higher layer, make a prediction $(\hat{u}_{j|i})$
- **2)** Compare the prediction with actual output (\mathbf{v}_j)
- **3)** Based on $\hat{u}_{j|i} \& v_j$ similarity, adjust the connection strength (routing)
- 4) Go to (2), if not converged

Routing-by-Agreement – Equations

 $\hat{\mathbf{u}}_{j|i}$: Prediction of *i* about *j* using W \mathbf{C}_{ij} : coupling coef. Between *i* and *j* \mathbf{S}_{j} : pre-activation of *j* \mathbf{V}_{j} : activation of *j* Squashing Non-linearity

j j

b_{ij}: logit (similarity)

ng W_{ij}
and j

$$\mathbf{s}_{j} = \sum_{i} c_{ij} \hat{\mathbf{u}}_{j|i}$$

$$\mathbf{teration}$$

$$\mathbf{s}_{j} = \sum_{i} c_{ij} \hat{\mathbf{u}}_{j|i}$$

$$\mathbf{v}_{j} = \frac{\|\mathbf{s}_{j}\|^{2}}{1 + \|\mathbf{s}_{j}\|^{2}} \frac{\mathbf{s}_{j}}{\|\mathbf{s}_{j}\|}$$

$$b_{ij} + = \mathbf{v}_{j} \cdot \hat{\mathbf{u}}_{j|i} \rightarrow c_{ij} = \frac{\exp(b_{ij})}{\sum_{j'} \exp(b_{ij'})}$$
E Loweimi 15/40

Routing-by-Agreement – WorkFlow

Routing-by-Agreement – Algorithm

Procedure 1 Routing algorithm.

- 1: **procedure** ROUTING($\hat{u}_{j|i}, r, l$)
- 2: for all capsule *i* in layer *l* and capsule *j* in layer (l + 1): $b_{ij} \leftarrow 0$.
- 3: for r iterations do
- 4: for all capsule *i* in layer $l: \mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$
- 5: for all capsule j in layer (l+1): $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$

6: for all capsule
$$j$$
 in layer $(l+1)$: $\mathbf{s}_j \leftarrow \sum_i c_{ij} \mathbf{u}_{j|i}$
6: for all capsule j in layer $(l+1)$: $\mathbf{v}_i \leftarrow \text{squash}(\mathbf{s}_i)$

$$\triangleright$$
 softmax computes Eq. 3

 $\triangleright \text{ squash computes Eq. 1} \\ \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_{j}$

- 7: for all capsule *j* in layer (i + 1): $\mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j)$ return \mathbf{v}_j
- $-c_{ii}$ is learned by *dynamic routing* in forward path
- W" is learned by *backprop* in backward path

$$c_{ij} = \frac{\exp(b_{ij})}{\sum_{j'} \exp(b_{ij'})}$$

Conventional NN vs CapsNet

	Neurons	Capsules		
Input/Output	Vector/Scalar	Vector/Vector		
Training	Backpropagation	Dynamic Routing & Backpropagation		
Pre-activation	$z_j = \sum_i w_{ij} x_i + b_j$	$\mathbf{s}_j = \sum_i c_{ij} \left[\mathbf{W}_{ij} ight] \mathbf{u}_i$		
Non-linearity	scalar2scaler	vector2vector		
iten incunty	ReLU, Tanh, etc.	$\mathbf{v}_j = rac{\ \mathbf{s}_j\ ^2}{1+\ \mathbf{s}_j\ ^2} rac{\mathbf{s}_j}{\ \mathbf{s}_j\ }$		

Routing-by-Agreement

Intuitions

Routing-by-Agreement – Intuition (1)

Routing-by-Agreement – Intuition (1)

V ► j

V ► k

Vote (prediction) plane

E. Loweimi

19/40

Routing-by-Agreement – Intuition (1)

Routing-by-Agreement – Intuition (2)

Routing-by-Agreement – Note

$$\mathbf{\hat{u}}_{j|i} = W_{ij}\mathbf{u_i}$$

۲**U**_P

Votes distribution in vote plane, i.e. $\hat{\mathbf{u}}_{_{j|i}}$ and $\hat{\mathbf{u}}_{_{k|i}}$, are different because although $\mathbf{u}_{_{i}}$ is the same, $W_{_{ij}}$ and $W_{_{ik}}$ are different. Vote (prediction) plane

Routing-by-Agreement – Intuition (3)

Each higher level capsule has a dynamic routing block. – **Primary** capsule layer (lowest level) has not.

21/40

Routing-by-Agreement – Iterations

Cost B

Routing-by-agreement to done greedily across layers ... – When iteration**s** between blue-green finished, move to green-red.

22/40

Routing-by-Agreement – Intuition (3)

Capsule Network in NIPS 2017

Dynamic Routing Between Capsules

Sara Sabour

Nicholas Frosst

Geoffrey E. Hinton Google Brain Toronto {sasabour, frosst, geoffhinton}@google.com

Capsule Network in NIPS 2017

Capsule Network in NIPS 2017

Reconstruction Network (Decoder)

– Target capsule is kept; rest is **0** masked

– Reconstruction from a vector \rightarrow ~ auto-encoder

Unsupervised Reconstruction Loss

Loss Function

• Loss function = supervised + α unsupervised

Loss Function

- Loss function = supervised + α unsupervised
- Supervised \rightarrow classification
 - margin loss
- Unsupervised (decoder) → Reconstruction
 - MSE
 - Down-scaled by α = 5e-4
 - Adjusting scales + making the supervised part dominant

$$L_{k} = T_{k} \max(0, m^{+} - ||v_{k}||)^{2} + \lambda (1 - T_{k}) \max(0, ||v_{k}|| - m^{-})^{2}$$
$$L = \sum_{k} L_{k}$$

 $T_{\mu} = 1$ if (digit of class k is present) else **0**

$$L_{k} = T_{k} \max(0, m^{+} - ||v_{k}||)^{2} + \lambda (1 - T_{k}) \max(0, ||v_{k}|| - m^{-})^{2}$$
$$L = \sum_{k} L_{k}$$

 $T_{\mu} = 1$ if (digit of class k is present) else **0**

$$Z = T_{k} X + (1-T_{k}) Y$$

- T_{k} \in (0,1) \rightarrow weighted mean
- T_{k} \in {0,1} \rightarrow Z = X if T_{k}==1 else Y

E. Loweimi

$$L_{k} = T_{k} \max(0, m^{+} - ||v_{k}||)^{2} + \lambda (1 - T_{k}) \max(0, ||v_{k}|| - m^{-})^{2}$$
$$L = \sum_{k} L_{k}$$

* Hinge (max-margin) loss:

- max(0, m⁺-x)
 ==>> min loss: x > m⁺
- max(0, x-m⁻)
 ==>> min loss: x < m⁻

 $-m^{+}=0.9, m^{-}=0.1$

$$L_{k} = T_{k} \max(0, m^{+} - ||v_{k}||)^{2} + \lambda (1 - T_{k}) \max(0, ||v_{k}|| - m^{-})^{2}$$

$$L = \sum_{k} L_{k}$$
For minimum loss
$$- \text{If } T_{k} == 1: ||v_{k}|| > m^{+}$$

$$- \text{If } T_{k} == 0: ||v_{k}|| < m^{-}$$
E. Loweimi
E. Loweimi

$$L_{k} = T_{k} \max(0, m^{+} - ||v_{k}||)^{2} + \lambda (1 - T_{k}) \max(0, ||v_{k}|| - m^{-})^{2}$$
$$L = \sum_{k} L_{k}$$

* $\lambda = 0.5$ - down-weighs T_k = 0 case - Purpose: Numerical stability

Experimental Results

CapsNet Classification Error

Table 1			STOA: 0.21%	Trials for STD: 3
Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}$	-
CapsNet	3	yes	$\boldsymbol{0.25}_{\pm 0.005}$	5.2

CapsNet Classification Error

Table 1			STOA: 0.21%	Trials for STD: 3
Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}$	-
CapsNet	3	yes	$\boldsymbol{0.25}_{\pm 0.005}$	5.2

* Routing iterations: 3 to 5 is enough \leftarrow computational cost + overfitting

* Adding reconstruction term to loss is useful.

CapsNet Logit Change (MNIST)

After 500 epochs, average change in logit (b_{ij}) is stabilised.

3 iterations of routing is enough.

E. Loweimi

CapsNet Training Loss (CIFAR 10)

3 iterations of routing optimise the loss faster and converges to a lower loss at the end.

More routing iterations increases the network capacity \rightarrow overfitting

CapsNet Error on CIFAR 10

- CapsNet: 10.6%
 - About what standard CNNs achieved when first tried
 - Zeiler and Fergus 2013 \rightarrow 19.4, 15.1%
 - State-of-the-art: 3.47% (Graham 2015)

CapsNet Error on Small NORB

- CapsNet error: 2.7%
 - Best task for CapsNet (Appendix B)
 - On-par with state-of-the-art (2.56%)
 - Ciresen et al., 2011
 - New CapsNet with EM routing, ICLR 2018 \rightarrow 1.4%

-		S.	.A.S."	400
X	畜	X	N	Ť
V	N.	X	×	法
	Y		1	
C	U	0	0	and and

CapsNet Reconstruction

(I,r,p) = (target label, prediction, reconstruction target)

E. Loweimi

CapsNet Reconstruction

The model preserves many of the details while smoothing the noise.

E. Loweimi
Effect of Dimension Perturbation on Recon.

	-0.25	-0.20				0.00				0.20	0.25	Dig	itCap)S
Scale and thickness	\mathcal{D}	$\boldsymbol{\heartsuit}$	6	6	6	6	6	6	6	6	6	-	1	
Localized part	6	6	6	6	6	6	6	6	6	6	6	-	2 3	DigitCaps
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5	-	4	\
Localized skew	4	Ч	Ч	Ч	Ч	4	4	4	4	4	4	_		
Width and translation	7	5	3	3	3	3	3	3	3	3	3	_	• /	/
Localized part	2	2	2	2	2	2	2	2	2	2	2	-	14	
					Tw	eak v	alue						16	

16D

Effect of Dimension Perturbation on Recon.

	-0.25	-0.20				0.00				0.20	0.25	Dig	itCaps
Scale and thickness	\mathcal{D}	9	$\boldsymbol{\wp}$	$\boldsymbol{\omega}$	6	6	6	6	6	6	6	◄	1
Localized part	6	6	6	6	6	6	6	6	6	6	6	-	2 3 DigitCaps
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5	-	4
Localized skew	4	4	Ч	Ч	Ч	4	4	4	4	4	4	_	
Width and translation	7	5	3	3	3	3	3	3	3	3	3	_	· /
Localized part	Z	Z	2	2	2	2	2	2	2	2	2	-	14
	Tweak value												16

Each dimension of capsule learns to span the space of variation of an instantiation parameter, e.g. scale, translation, thickness

37/40

16D

Effect of Dimension Perturbation on Recon.

	-0.25	-0.20				0.00				0.20	0.25	Dig	itCaps	
Scale and thickness	\mathcal{D}	\mathcal{G}	$\boldsymbol{\wp}$	$\boldsymbol{\omega}$	6	6	6	6	6	6	6	-	1	
Localized part	6	6	6	6	6	6	6	6	6	6	6	-	2	DigitCaps
Stroke thickness	5	5	5	5	5	5	5	5	5	5	5	-	4	
Localized skew	4	4	Ч	Ч	Ч	4	4	4	4	4	4			
Width and translation	7	5	3	3	3	3	3	3	3	3	3	_	•	
Localized part	2	2	2	2	2	2	2	2	2	2	2	-	14	
	Tweak value												16	

CST R

Higher interpretability & controllability

37/40

16D

MultiMNIST Reconstruction

- MultiMNIST
 - Each X has two labels (I_1, I_2)
- L: (*I*₁,*I*₂)
 - Target classification labels
- R: (r₁,r₂)
 - Target reconstruction label
- P: predicted label
- *: reconstruction from a digit that is neither the label nor the prediction.

Red and Green are reconstructed digits (yellow: overlap)

MultiMNIST Reconstruction

CapsNet successfully deals with overlapping objects.

Red and Green are reconstructed digits (yellow: overlap)

E. Loweimi

Challenges Ahead CapsNet

- Not state-of-the-art in tasks like CIFAR 10 (good start!)
- Not tested yet on larger databased (e.g. ImageNet) due to technical issues
 - Slow training \rightarrow Routing iterations
 - Memory problem
- A CapsNet cannot see two very close identical objects
 - "crowding" \leftrightarrow similar to human vision system

Wrap-up (1)

- Each capsule is a group of neurons
 - Expand artificial scalar neuron to vector
- Capsule represents an entity through a vector (inverse graphics)
 - Magnitude \rightarrow probability of the entity presence \rightarrow invariant
 - Phase \rightarrow state of the entity \rightarrow equivariant
- Dynamic routing: how capsules of two layers should communicate
- Parameters & Learning
 - Coupling coefficients (c_{ij}) \rightarrow routing-by-agreement
 - Affine transformations (W_{ij}) \rightarrow backpropagation

Wrap-up (2)

- Advantages:
 - Built-in disentanglement between entity's pose (equivariant) and presence probability (invariant)
 - Dynamic hierarchical modelling, smarter than static max-pooling
 - Requires less data, higher robustness (viewpoint), interpretability
- Challenges:
 - Technical difficulties in scaling up (e.g. memory problem)
 - Performance is still not in the state-of-the-art level
 - e.g. CIFAR 10 (Error: 10.6% vs 3.47%)

That's it!

- Thanks for Your Attention
- Q/A
- Appendices
 - Appendix A: MNIST Database & its variants
 - Appendix B: (Small) NORB Database

MNIST Database

PROC. OF THE IEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document Recognition

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner

3681796691

6757863485

A1/2

E. Loweimi

CST B

LeNet-5 Architecture

MNIST Database

E. Loweimi

- Yan LeCun et al., 1998
- Handwritten digits
 - 28 x 28
 - Training: 60 k
 - Test: 10 k
- Variants
 - affMNIST
 - MultiMNIST
 - EMNIST: letters+digits
 - train: 240k, test: 40k

(Small) NORB Database

Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting

Yann LeCun, Fu Jie Huang, The Courant Institute, New York University 715 Broadway, New York, NY 10003, USA http://yann.lecun.com

Léon Bottou NEC Labs America, 4 Independence Way, Princeton, NJ 08540 http://leon.bottou.org

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04) 1063-6919/04 \$20.00 © 2004 IEEE

(Small) NORB Database

- Y. LeCun et al., 2004
- 3D object recognition task
 - 96 x 96 images of 50 toys, 5-generic categories
 - Animal, human, airplane, car, truck
- Objects where imaged by 2 cameras under ...
 - 6 Lighting conditions, 9 elevations, 18 azimuths
- Download
 - NORB \rightarrow 29160 images
 - Small NORB \rightarrow 24300 images
 - Normalised object sizes and uniform background

