

Raw Sign and Magnitude Spectra for Multi-head Acoustic Modelling

Erfan Loweimi Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR) University of Edinburgh

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Motivation

- Reviewers' Comments
- Components of A Perfect Information Processing System

Reviewers' Comments ...

- ... I really enjoyed reading this paper ... The approach is plausible and less ad hoc than much recent work ... dealing with phase ...
- The paper shows that some good thinking and theory at the signal level can go hand in hand with a DNN ... w/o the need for blindly pumping tons of data ...
- ... This paper provides a novel and strong contribution ...
- ... is very well written, exhibit a clear structure and guides the reader nicely through the presentation of the topic ...
- ... is technically sound and the presented research well motivated ...
- ... it is an approach that is very worthwhile being shared at Interspeech ...

1) Perfect information filtering

- ONLY pass through the task-correlated info \rightarrow *Discriminability*
- Filter the rest → Robustness & Generalisation

1) Perfect information filtering

- ONLY pass through the task-correlated info \rightarrow Discriminability
- Filter the rest \rightarrow Robustness & Generalisation

1) Perfect information filtering

- ONLY pass through the task-correlated info \rightarrow Discriminability
- Filter the rest → Robustness & Generalisation

Task: ASR

"Great men are not born great, they grow great"

1) Perfect information filtering

- ONLY pass through the task-correlated info \rightarrow Discriminability
- Filter the rest → Robustness & Generalisation

Task: Speaker Identification

Don Vito Corleone (Marlon Brando)

1) Perfect information filtering

- ONLY pass through the task-correlated info \rightarrow Discriminability
- Filter the rest \rightarrow Robustness & Generalisation

0

Task: Language Identification

"Great men are not born great.

ney grow great . .

fario Puzo, Th

English

2) Perfect information representation for the classifier

- e.g. Softmax is a linear classifier; likes linearly separable data

- 2) Perfect information representation for the classifier
 - e.g. Softmax is a linear classifier; likes linearly separable data

WNIVERSENT HUS

Perfect Info Processing System (3)

3) Input information content

- upper-bounds the effectiveness of info filtering

3) Input information content

- upper-bounds the effectiveness of info filtering
- "Garbage in, Garbage out"
 - "... output can only be as accurate as the information entered ..."

3) Input information content

- upper-bounds the effectiveness of info filtering
- "Garbage in, Garbage out"
 - "... output can only be as accurate as the information entered ..."

3) Input information content

- upper-bounds the effectiveness of info filtering
- "Garbage in, Garbage out"
 - "... output can only be as accurate as the information entered ..."

Our Goal ...

- Components: Input, filtering, representation
- Goal: Find an input (front-end) that ...
 - 1) ... is as informative as the raw waveform (complete)
 - 2) ... results in a better performance

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Feature Extraction Pipeline

Feature Extraction Pipeline

Signal Information Distribution (1)

$$\begin{aligned} & \text{Min-Phase All-pass Decomposition} \\ \mathbb{I}_{\text{signal}} = \mathbb{I}_{\text{waveform}} = \mathbb{I}_{\text{Min-Ph}} \cup \mathbb{I}_{\text{All-Pass}} \\ & \mathbb{I}_{\text{Min-Ph}} = \mathbb{I}_{\text{Scale}} \cup \mathbb{I}_{\text{Min-Ph}}^{*} \\ & \mathbb{I}_{\text{Mag}} = \mathbb{I}_{\text{Min-Ph}} \\ & \mathbb{I}_{\text{Phase}} = \mathbb{I}_{\text{All-Pass}} \cup \mathbb{I}_{\text{Min-Ph}}^{*} \\ & \mathbb{I}_{\text{Mag}} \cap \mathbb{I}_{\text{Phase}} = \mathbb{I}_{\text{Min-Ph}}^{*} \end{aligned}$$

E. Loweimi

All-Pass & Mag in Info Space

- All-pass & Mag spectra are orthogonal in the info space
 - P(AP|Mag) = P(AP)
 - P(Mag|AP) = P(Mag)
 - $\mathbb{I}_{\mathrm{All-Pass}} \cap \mathbb{I}_{\mathrm{Mag}} = \emptyset$

- No chance to recover one from another (underdetermined)
 - No matter how powerful the info processing machinery is!

Computing All-Pass Element

- **Parametric** \leftrightarrow rational transfer function, H(f)
 - × H(f) may not be available
 - * Finding max-phase zeros is expensive, for a large polynomial

$$\sum_{i=0}^{M} b_i z^i = \prod_{i=1}^{M} (z - z_i)$$

- Non-parametric ↔ complex cepstrum
 - ✓ More practical … but involves …
 - * Phase unwrapping & large FFT size for accuracy

All-Pass Information Content ...

- All-Pass-only reconstructed signal includes ...
 - Temporal localisation info
 - Speech source (excitation) info

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Sign Spectrum; An Alternative for All-P ...

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-31, NO. 5, OCTOBER 1983

Signal Reconstruction from Signed Fourier Transform Magnitude

PATRICK L. VAN HOVE, MONSON H. HAYES, MEMBER, IEEE, JAE S. LIM, MEMBER, IEEE, AND ALAN V. OPPENHEIM, FELLOW, IEEE

• BOTH complements magnitude spec info ...

$$I_{signal} = \mathbb{I}_{Mag} \cup \mathbb{I}_{All-Pass} = \mathbb{I}_{Mag} \cup \mathbb{I}_{Sign}$$

Sign Spectrum; An Alternative for All-P ...

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-31, NO. 5, OCTOBER 1983

Signal Reconstruction from Signed Fourier Transform Magnitude

PATRICK L. VAN HOVE, MONSON H. HAYES, MEMBER, IEEE, JAE S. LIM, MEMBER, IEEE, AND ALAN V. OPPENHEIM, FELLOW, IEEE

- BOTH complements magnitude spec info ... BUT
 - Sign spectrum samples are $\pm 1 \rightarrow 1$ bit per bin
 - All-Pass samples are float \rightarrow 16 bits per bin

$$I_{\text{signal}} = \mathbb{I}_{\text{Mag}} \cup \frac{\mathbb{I}_{\text{All-Pass}}}{\mathbb{I}_{\text{Mag}}} = \mathbb{I}_{\text{Mag}} \cup \frac{\mathbb{I}_{\text{Sign}}}{\mathbb{I}_{\text{Sign}}}$$

Scale

Min-Ph*

All-Pass

• One bit of the *phase spectrum* ($\phi_x(\omega)$) info ...

$$S_X(\omega; \alpha) = \begin{cases} +1 & \alpha - \pi \le \phi_X(\omega) \le \alpha \\ -1 & \text{otherwise} \end{cases}$$

$$S_X(\omega; \alpha) = \operatorname{sign}\{\operatorname{Real}\{\exp(j(\frac{\pi}{2} - \alpha)X(\omega))\}\}$$

$$S_X(\omega; \alpha = \frac{\pi}{2}) = \operatorname{sign}\{\operatorname{Real}\{X(\omega))\}\}$$

• One bit of the *phase spectrum* ($\phi_x(\omega)$) info ...

$$S_X(\omega;\alpha) = \begin{cases} +1 & \alpha - \pi \le \phi_X(\omega) \le \alpha \\ -1 & \text{otherwise} \end{cases}$$

$$S_X(\omega; \alpha) = \operatorname{sign}\{\operatorname{Real}\{\exp(j(\frac{\pi}{2} - \alpha)X(\omega))\}\}$$

 $\alpha = \pi/2$

$$S_X(\omega; \alpha = \frac{\pi}{2}) = \operatorname{sign}\{\operatorname{Real}\{X(\omega))\}\}$$

• One bit of the phase spectrum ($\phi_x(\omega)$) info ...

• One bit of the *phase spectrum* ($\phi_x(\omega)$) info ...

Understanding Sign Spectrum ...

- sign spectrum is not legible! - α choice is not important!

Understanding Sign Spectrum ...

Aggrandisement

E. Loweimi

Signed-Magnitude Spectrum

• Product of the sign and magnitude spectra ...

$$\tilde{X}(\omega; \alpha) = S_X(\omega; \alpha) |X(\omega)|$$

Signed-Magnitude Spectrum

Sign spectrum completes mag info ...

- Theorem Let x[n] and y[n] be two real, causal and finite extent sequence with z-transform which have no zeros on the unit circle. If \tilde{X} = \tilde{Y} for all ω then x[n]=y[n].
- From information viewpoint ...
 - Sign & Mag spectra, together, uniquely characterise *x*[*n*]

$$\mathbb{I}_{x[n]} = \mathbb{I}_{\tilde{X}(\omega)} = \mathbb{I}_{S_{X(\omega)}} \cup \mathbb{I}_{|X(\omega)|}$$
$$= |\mathbb{I}_{S_{X(\omega)}}| + |\mathbb{I}_{|X(\omega)|}|$$

E. Loweimi

Magnitude-only Signal Reconstruction

- * Griffin-Lim (GL) \rightarrow #iterations: 100; window: Hamming; overlap: 75%
 - PESQ (32 ms): 4.22 ± 0.09
 - PESQ (512 ms): 2.12 ± 0.24

Sign-only Signal Reconstruction via GL

- * Sign spectrum info content ...
 - Temporal localisation of events
 - Source (excitation) component info

* Griffin-Lim (GL)
* overlap: 75%
* #iterations: 100
* window: Hamm

E. Loweimi

F0 extraction from Sign Spectrum ...

"Mag+Sign"-only Signal Reconstruction

- * Griffin-Lim \rightarrow #iterations: 100; window: Hamming; overlap: 75%
 - **NOTE**: Sign spectrum is ONLY used for **initialising** the phase

E. Loweimi

Playing some <u>mag-only</u> reconstructed signals ...

* Griffin-Lim \rightarrow #iterations: 100; frame length: 32ms; overlap: 75%

- * Signal: *sp01.wav* from *NOIZEUS* [sampling rate: 8000 Hz, #bits: 16]
- * Text: "The birch canoe slid on the smooth plank"

Sign Effect on GL Reconstruction Error

✓ (Near) Perfect reconstruction (error ≈ 0)
 ✓ Faster convergence

E. Loweimi

Usefulness of Sign Spec. in PESQ (1)

* Perfect (PESQ=4.5)	Hamming		
* NOT Perfect	32 ms	512 ms	
Mag	4.22 ± 0.09	2.12 ± 0.24	
Mag+Sign	4.50 ± 0.00	4.20 ± 0.08	
Gain in PESQ	0.27	2.08	

PESQ (512 ms)[Hamming] ≈ 4.2 ← NOT perfect (4.5)!
 ^x Does it contradict with the theorem?

Usefulness of Sign Spec. in PESQ (1)

* Perfect (PESQ=4.5)	Ham	amming	
* NOT Perfect	32 ms	512 ms	
Mag	4.22 ± 0.09	2.12 ± 0.24	
Mag+Sign	4.50 ± 0.00	4.20 ± 0.08	
Gain in PESQ	0.27	2.08	

- PESQ (512 ms)[Hamming] \approx 4.2 \leftarrow NOT perfect (4.5)!
 - It does NOT contradict with the theorem ...
 - The theorem tells WHAT is possible, NOT HOW to do it!

Usefulness of Sign Spec. in PESQ (2)

* Perfect (PESQ=4.5)	Ham	Rectangular	
* NOT Perfect	32 ms	512 ms	512 ms
Mag	4.22 ± 0.09	2.12 ± 0.24	2.38 ± 0.20
Mag+Sign	4.50 ± 0.00	4.20 ± 0.08	4.48 ± 0.02
Gain in PESQ	0.27	2.08	2.10

* Griffin-Lim \rightarrow #iterations: 100; overlap: 75%

- Gain in PESQ (32 ms) ≈ 0.3
- Gain in PESQ (512 ms) ≈ 2.1

E. Loweimi

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Combination of Sign & Mag for ASR

- HOW to combine?
 - In synthesis via FFT/iFFT, e.g. Griffin-Lim \rightarrow sign times mag
 - In classification/regression → ANYTHING WHICH WORKS!

Combination of Sign & Mag for ASR

- HOW to combine?
 - In synthesis via FFT/iFFT, e.g. Griffin-Lim \rightarrow sign times mag
 - In classification/regression \rightarrow ANYTHING WHICH WORKS!
- Multi-stream info processing problem ...
 - How to process each individual stream?
 - How to fuse the (processed) streams?
 - What is the optimal architecture for such task?

CNN

Proposed Schemes for Multi-stream Information Processing

28/36

What is the optimal fusion scheme?

- For a given #layers, higher fusion point leads to ...
 - 1) More layers dedicated to individual stream processing
 - Fewer layers remain for abstraction extraction (after fusion)

E. Loweimi

What is the optimal fusion scheme?

• For a given #layers, higher fusion point leads to ...

1) More layers dedicated to individual stream processing

- Fewer layers remain for abstraction extraction (after fusion)
- 2) More parameters, bigger model, e.g. $\#P_{contant-3} \approx 2 \times \#P_{concat-0}$

Case Study: Concat-0

- Input Streams: *Mag* and *Sign*
- They r orthogonal & differ in ...
 - Info encoding scheme
 - Local patterns/correlation
 - Dynamic range
 - Continuous vs discrete
 - Statistical proprieties

E. Loweimi

Case Study: Concat-0

- Input Streams: *Mag* and *Sign*
- They r orthogonal & differ in ...
 - Info encoding scheme
 - Local patterns/correlation
 - Dynamic range
 - Continuous vs discrete
 - Statistical proprieties

Using the same set of filters for both perplexes the learner!

Statistical Properties of Sign Spectrum

- Mean \approx 0, STD \approx 1
- Statistical normalisation is not required!

Statistical Properties of Sign Spectrum

- Mean \approx 0, STD \approx 1; in all conditions (a structural property)
- Statistical normalisation is not required!

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Experimental Setup

- Databases: TIMIT/NTIMIT (5.4 h), Aurora-4 (14 h) & WSJ (81 h)
- Toolkit: PyTorch-Kaldi, default setting (w/o monophone regularisation)
- Dropout + {Normalisation: LayerNorm \leftrightarrow CNN; BatchNorm \leftrightarrow MLP}
- Frame length ± #context_frames:
 - Raw: 200ms ± 0
 - MFCC/FBank/Mag/Sign: 25ms ± 5
- Feature Normalisation: for all features except raw waveform ...
 - Speaker-level MVN for TIMIT/NTIMIT & WSJ
 - Utterance-level MVN for Aurora-4

Experimental Results – TIMIT/NTIMIT

- Mag compression (^0.1) helps
- Sign-only \rightarrow NOT that bad!
- Mag+Sign concatenation helps
- Mag+Sign is better than Raw
- More info \neq lower PER

	TIMIT		NTIMIT	
	Dev	Eval	Dev	Eval
MFCC	17.1	18.6	27.5	28.9
FBank	16.3	18.2	27.5	28.5
Raw	17.2	18.6	25.2	26.3
Mag	16.8	17.8	30.9	30.1
Mag ^{0.1}	15.9	17.6	25.2	25.6
Sign	27.2	30.0	53.7	54.7
Concat-1	15.4	17.5	24.3	24.8
Concat-2	15.7	17.8	24.8	25.3
Concat-3	15.5	17.5	24.6	25.6

Experimental Results – Aurora-4 (Multi)

- Mag compression helps
- Sign-only \rightarrow Ave = 31.8%
- Performance ...
 - Concat > Mag > FBank > RawMFCC >> Sign
 - More info \searrow lower WER
- Concat-1, Ave-WER = 8.2%

Feature	A	B	C	D	Ave
MFCC	3.5	6.8	7.1	16.5	10.7
FBank	2.9	5.9	4.5	14.5	9.2
Raw	3.1	5.7	7.5	16.5	10.3
Mag	2.7	5.5	4.7	14.3	9.0
Mag ^{0.1}	2.6	5.3	4.3	14.1	8.8
Sign	7.8	21.5	29.0	46.5	31.8
Concat-1	2.5	5.1	3.9	13.0	8.2
Concat-2	2.4	5.0	4.0	13.6	8.4
Concat-3	2.4	5.1	4.1	13.9	8.6

– A: Clean

– C: Channel

– B: Additive Noise –

– B: Additive + Channel

Experimental Results – WSJ

- Mag (^0.1) compression helps
- Sign-only → 21.2%, 14.0%
- Performance ranking ...
 - Concat > Raw > Mag > FBank > MFCC
- For WSJ (81 hours)
 - More info \rightarrow lower WER
 - Concat-1 slightly > 2 & 3

	Dev93	Eval92
MFCC	10.4	6.8
FBank	9.1	5.9
Raw	8.4	5.2
Mag	9.3	5.9
$Mag^{0.1}$	8.8	5.5
Sign	21.2	14.0
Concat-1	8.1	4.7
Concat-2	8.2	4.8
Concat-3	8.2	4.8

Outline

- Motivation
- Signal Information Distribution
- Sign Spectrum
- Combination of Raw Magnitude & Sign Spectra
- Experimental Results
- Conclusion

Conclusion

- Perfect system \leftrightarrow Perfect input \rightarrow includes all signal info
- Sign spectrum is an alternative for the all-pass component, one bit (±1) of the phase spectrum, completes the magnitude spectrum
- Sign & Magnitude info streams processed via a multi-head CNN
 - Four fusion schemes were investigated
- Notable performance gain was achieved (Aurora-4 & WSJ)
- Future work: Multi-stream "Sign+Mag" processing for other tasks

- Thanks for your attention!
- Q&A

