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Outline
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Feature Engineering: Goal
● Goal: A handcrafted pipeline 
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Feature Engineering: Design
● Design: Prior knowledge ...
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Feature Engineering: Design
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Feature Engineering: Pros
● Pros: Interpretable, easy, fast, general-purpose
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Feature Engineering: Pros
● Pros: Interpretable, easy, fast, general-purpose
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MFCC is successfully used in many tasks ...

Language ID

ASR TTS

Emotion classification

Speaker ID
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and many more ...



  

Feature Engineering: Cons (1)
● Task-blind (general-purpose)
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Feature Engineering: Cons (2)
● Suboptimal info loss
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MFCC

   

 * Phase spectrum
   

 * Resolution (subsampling)
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Feature Engineering: Cons (2)
● Suboptimal info loss

– Lost info is lost permanently

Loweimi et al.   6/39Link
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Feature Engineering: Cons (3)
● Suboptimal info filtering
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Optimal Info Filtering: Pass through ONLY relevant/useful info

Link

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Dbhx1xYJ86Fw&psig=AOvVaw3hs9K-8bI-BWEBV6dXEW3j&ust=1620735577196000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIDx_teMv_ACFQAAAAAdAAAAABAD


  

Feature Engineering: Cons (3)
● Suboptimal info filtering

– Irrelevant/nuisance info/variability passed through
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Feature Engineering: Cons (2) & (3)
● Suboptimal info loss/filtering

– Lost info is lost permanently

– Irrelevant/nuisance info/variability passed through
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… The useful information which is not passed to the ASR system is lost 
forever. On the other hand, irrelevant information which is not removed 
has to be dealt with by the ASR system, often at significant expense.

Hermansky et al., “Perceptual Properties of Current Speech Recognition Technology”, Proceedigs of eht IEEE, 2013



  

Feature Engineering: Cons (2) & (3)
● Suboptimal info loss/filtering

– Lost info is lost permanently

– Irrelevant/nuisance info/variability passed through
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Submitted to INTERSPEECH 2021
  

… task-irrelevant info could be useful if ...



  

Feature Learning: Goal
● Goal: Learn the pipeline, instead of engineering
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Feature Learning: Design
● Design: Architecture, Data/Labels, Objective/Optimiser
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Feature Learning: Pros (1)
● Pros: Task-specific, general-purpose ...
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Feature Learning: Pros (1)
● Pros: Task-specific, general-purpose ...
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Feature Learning: Pros (2)
● Pros: Joint learning
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Feature Learning: Caveat
● Info lost in engineering stage is lost permanently ...
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Feature Learning: Caveat
● Info lost in engineering stage is lost permanently ...

– upperbounds performance

– machinery cannot generate info

Loweimi et al.
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Feature Learning – Caveat Solution
● Lossless front-end (signal is uniquely recoverable from feature)

– Examples: Raw waveform, Mag+Sign, ...

Loweimi et al.
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Raw Waveform Acoustic Modelling

● Feed the model with raw waveform  

Loweimi et al.   15/39
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Raw Waveform Acoustic Modelling

● Pros: 
– Lossless front-end
– Task-specific
– Joint optimisation
– Interpretability
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Raw Waveform Acoustic Modelling

● Cons: 
– High-dim … hardware + curse of dimensionality (?)
– Info disentanglement is challenging
– Task-specific
– …
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Raw Waveform Acoustic Modelling
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● Solutions:
– Data  ↔  High-dim + info disentanglement
– Constraint (arch., regular./norm)  ↔  High-dim
– Adaptation  ↔  Task-specific
– ...
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Raw Waveform Acoustic Modelling

● Pros: … Interpretability ...
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Raw Waveform Acoustic Modelling

● Pros: … Interpretability ...
– First layer in CNN → Filterbank → Time-Frequency Analysis (TFA)
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Raw Waveform Acoustic Modelling

● Pros: … Interpretability ...
– First layer in CNN → Filterbank → TFA
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Raw Waveform Acoustic Modelling

● Pros: … Interpretability ...
– First layer in CNN → Filterbank → TFA
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Engineered vs Learned Filterbank

PLP

MFCC

CNN SincNet

Loweimi et al.

Loweimi et al., et al. On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters, Interspeech 2019

MLPCNN

DNN
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Listen! 14, Apr, 2020; Parametric CNNs for raw waveform modelling, Slides

https://www.research.ed.ac.uk/en/publications/on-learning-interpretable-cnns-with-parametric-modulated-kernel-b
https://www.wiki.ed.ac.uk/display/CSTR/Listen+2019-20?preview=/459457503/459457508/Raw_Part_IV.pdf


  

Gradient Vanishing & First Layer 

● To what extent is the gradient 
vanishing problematic? 

Loweimi et al.

First Layer 
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Gradient Vanishing & First Layer 

● To what extent is the gradient 
vanishing problematic? DNN
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Outline
● Raw waveform acoustic modelling

 

● Dynamics
– Dynamics ↔ Temporal evolution ... during training

 

● Robustness
 

● Conclusion
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First Layer ... TFA … Questions ... 
● To what extent is it “vulnerable to gradient vanishing”?
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First Layer ... TFA … Questions ... 
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● What is its training “dynamics” (temporal evolution)? 

● How “optimal” are the learned filters? 

● How much first layer dynamics correlate with CE/WER?
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First Layer ... TFA … Questions ... 
● To what extent is it “vulnerable to gradient vanishing”?

● What is its training “dynamics” (temporal evolution)? 

● How “optimal” are the learned filters?

● How much first layer dynamics correlate with CE/WER?
 

● How to investigate all of these? 
– Framework? Task? Metric(s)?
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Framework: Task
● Modify TIMIT as follows …

– Attack two subbands, leave a narrow clean subband in between

BSF1
(1.2, 1.6 kHz)

BSF: (ideal) Band Stop Filter 
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(1.8, 2.1 kHz)

White 
Noise

Noisy Signal
+

1.2 1.6 1.8 2.1 
. . .. . .

kHz
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Framework: Task
● Modify TIMIT as follows …
● Advantage: optimal solution (TFA) is known

Loweimi et al.   23/39

BSF1
(1.2, 1.6 kHz)
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(1.8, 2.1 kHz)
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BSF: (ideal) Band Stop Filter 



  

Framework: Metric
● Average Frequency Response (AFR)

h
1

h
2

h
C

.

.

.h: impulse response
H: frequency response
C: #channels 

DNN  Conv

. . .

Loweimi et al.   24/39



  

Framework: Metric
● Average Frequency Response (AFR)

– A proxy for the frequency response of the first layer
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Setup
● Raw waveform models: CNN and SincNet
● Database: TIMIT, Aurora-4 and WSJ
● Noise: AWGN* → BSF†1 → BSF†2 → SNR: 0 dB
● DNN: CNN-1D (4L) → FC (5L) → Softmax
● Toolkit: PyTorch-Kaldi, default setting

Loweimi et al.
AWGN*: Additive White Gaussian Noise

● BSF†: (ideal) Band Stop Filter   25/39



  

AFR … 1st epoch

● SincNet approx. finds the noisy subbands
– Learns faster than CNN ← fewer params

1.2 1.6 1.8 2.1 . . .. . .

CNN SincNet
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AFR … 20th epoch

● Both find out the noisy and clean subbands

● CNN has a higher spectral resolution

1.2 1.6 1.8 2.1 . . .. . .

CNN SincNet
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AFR … 20th epoch

● Both find out the noisy and clean subbands

● Solving an enhancement problem using ASR labels (?)

1.2 1.6 1.8 2.1 . . .. . .

CNN SincNet
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Temporal Evolution of AFR (1)

● AFR change rate reduced for higher epochs

● After 10 epochs, AFR converges 

Loweimi et al.   27/39



  

Temporal Evolution of AFR (2)

Shaded area between epoch 1 to 20  ≡  Training Dynamics

1.2 1.6 1.8 2.1 . . .. . .
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Effect of Non-linearity

● Tanh & Sigmoid → larger shaded area → slower convergence
● ReLU → smaller shaded area (CNN) → faster conv ← Sparsity

CNN SincNet

Loweimi et al.   29/39



  

Database Effect: 
TIMIT vs Aurora-4 (A4)

● AFR for A4-Clean and TIMIT are almost similar

● Shaded area for A4 is smaller, especially for CNN-Raw

CNN SincNet

Loweimi et al.   30/39



  

SincNetCNN

Database Effect: A4, Clean vs Multi

● Shaded area is larger for A4 Multi-style
– Richer variability → More to learn!

Loweimi et al.   31/39



  

Database Effect: WSJ

● AFR is almost similar for these databases (all clean)

CNN CNN

Loweimi et al.   32/39



  

Correlation of AFR & {CE,WER}
● Database: WSJ

● AFRError = MSE{AFR
ep

 – AFRoptimal}

– Assuming AFR
optimal 

≡ AFR
25

Loweimi et al.   33/39



  

Correlation of AFR & {CE,WER}
● Database: WSJ

● AFRError = MSE{AFR
ep

 – AFR
25

}
 

● Similar dynamics … knee points ...
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Correlation of AFR & {CE,WER}
● Database: WSJ

● AFRError = MSE{AFR
ep

 – AFR
25

}
 

● Similar dynamics … knee points ...
 

● AFR temporal evolution highly 
correlates with CE/WER dynamics
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Outline
● Raw waveform acoustic modelling

 

● Dynamics
 

● Robustness
– How robust the raw waveform models are?
– How the performance can be improved?

 

● Conclusion
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Setup
● DNNs built using PyTorch-Kaldi
● Databases: TIMIT, Aurora-4, WSJ
● Frame length/shift: 25/10ms↔MFCC; 200/10ms↔Raw wave
● Context length: ±5 for MFCC, 0 for raw waveform
● Feature normalisation for raw waveform was done 

dimension-wise, similar to MFCC
– * → Mean-Var Normalisation at utterance level
– † → Mean-Var Normalisation at speaker level  

Loweimi et al.   34/39



  

Aurora-4, Clean Training 

● WER
MFCC

 < WER
FBank

 < WER
Raw

 

● WER gap between SincNet and 
CNN-raw is large

12.5

10.4
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Aurora-4, Clean Training 

● WER
MFCC

 < WER
FBank

 < WER
Raw

 

● WER gap between SincNet and 
CNN-raw is large

● MVN* helpful for all ...
– [abs, Rel.] Gain in % (epoch 25)

● MFCC → [5.1, 30.0]
● CNN → [7.5, 19.4]
● SincNet → [4.3, 16.8]

MVN*: mean-var norm at utter level
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Aurora-4, Multi-condition Training 

● WER
FBank

 < WER
Raw

 < WER
MFCC

 

● WER gap between CNN and 
SincNet is very small

0.2
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Aurora-4, Multi-condition Training 

● WER
FBank

 < WER
Raw

 < WER
MFCC

 

● WER gap between CNN and 
SincNet is very small

● Feature normalisation ...
– helpful for MFCC

– does NOT help raw waveform
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Aurora-4, Multi-condition Training 

● WER
FBank

 < WER
Raw

 < WER
MFCC

 

● WER gap between CNN and 
SincNet is very small

● Feature normalisation ...
– helpful for MFCC

– does NOT help raw waveform

● How can we reduce WER?

Loweimi et al.   36/39



  

A Detour → WSJ
● Detour → WSJ is not for robustness!
● Raw waveform outperforms others

– WER
Raw

 < WER
FBank

 < WER
MFCC

Why? More data (81 h)

ONLY data amount? TIMIT → …
 

Hypothesis:

Teacher error is more problematic 
for high dimensional features
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Loweimi et al., et al. On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters, Interspeech 2019

https://www.research.ed.ac.uk/en/publications/on-learning-interpretable-cnns-with-parametric-modulated-kernel-b


  

A Detour → WSJ
● Detour → WSJ is not for robustness
● Raw waveform outperforms others

– WER
Raw

 < WER
FBank

 < WER
MFCC

● Why? More data (81 h)
– ONLY data amount? TIMIT → …

 

● Hypothesis:
– Teacher/label error is more 

problematic for high-dim features

Loweimi et al.   37/39



  

Back to Aurora-4, Multi-condition

● Reduce teacher/label error via using a better alignment
● Better alignment obtained using clean training data

Results: More beneficial to the Raw waveform models
Loweimi et al.

Alignment from Multi

WER
FBank

 < WER
Raw

 < WER
MFCC
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Back to Aurora-4, Multi-condition

● Reduce teacher/label error via using a better alignment
● Better alignment obtained using clean training data ...

… is more beneficial to raw waveform models

Alignment from Clean Alignment from Multi

Loweimi et al.

WER
Raw

 < WER
FBank

 < WER
MFCC WER

FBank
 < WER

Raw
 < WER

MFCC

  38/39



  

Outline
● Raw waveform acoustic modelling for ASR

 

● Dynamics
 

● Robustness
 

● Conclusion
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Conclusion
● Keywords: ASR, Raw waveform, Dynamics, Robustness

● Dynamics ≡ Temporal evolution ... first conv layer

– Task: TIMIT+ Special Noise

– Metric: Average Frequency Response (AFR)

– What was studied: Gradient vanishing, optimality, resolution, 
non-linearity, database, correlation of AFR with CE & WER

● Robustness
– Mismatched condition → feature normalisation

– Matched condition → better alignment (lower teacher error)
Loweimi et al.   39/39



  

That’s It!
● Thanks for your attention!
● Q/A?

● Paper link

Loweimi et al.

https://www.isca-speech.org/archive/Interspeech_2020/abstracts/0017.html
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