

On the Robustness and Training Dynamics of Raw Waveform Models

Erfan Loweimi Peter Bell and Steve Renals

CSTR Talk 10,May, 2021

On the Robustness and Training Dynamics of Raw Waveform Models

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), The University of Edinburgh, Edinburgh, UK {e.loweimi, peter.bell, s.renals}@ed.ac.uk

Rejected in ICASSP 2020 Accepted in INTERSPEECH 2020

On the Robustness and Training Dynamics of Raw Waveform Models

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), The University of Edinburgh, Edinburgh, UK {e.loweimi, peter.bell, s.renals}@ed.ac.uk

Rejected in ICASSP 2020 Accepted in INTERSPEECH 2020

Life is not fair ... Never give up!

Outline

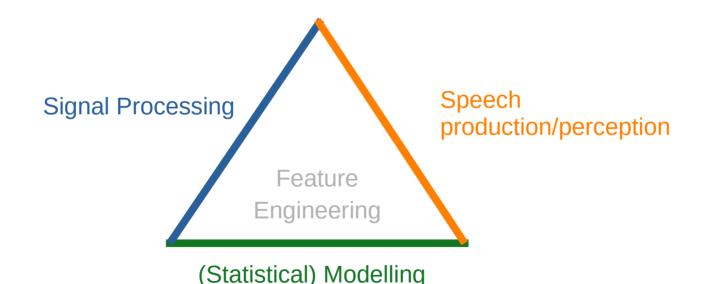
- Raw waveform acoustic modelling
- Dynamics
- Robustness
- Conclusion

Outline

- Raw waveform acoustic modelling
 - Feature engineering vs learning
 - Pros & cons
- Dynamics
- Robustness
- Conclusion

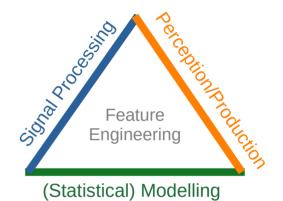
Feature Engineering: Goal

• Goal: A handcrafted pipeline



Feature Engineering: Design

• Design: Prior knowledge ...



Feature Engineering: Design

• Design: Prior knowledge ...

$$\stackrel{\text{signal}}{\rightarrow} \text{Pre-emph} \rightarrow \text{Frame block} \rightarrow \text{FFT} \rightarrow [1,]^2 \rightarrow \text{Filter}_{\text{Bank}} \rightarrow \text{Log} \rightarrow \text{DCT} \rightarrow \text{MFCC}$$

$$\stackrel{\downarrow}{\rightarrow} \text{Delta} \rightarrow \Delta$$

$$\stackrel{\downarrow}{\rightarrow} \text{Delta} \rightarrow \Delta \Delta$$

Feature Engineering: Pros

• Pros: Interpretable, easy, fast, general-purpose

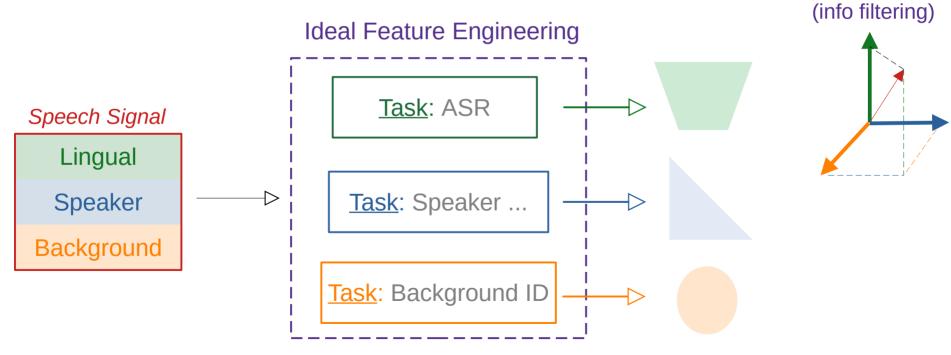
Feature Engineering: Pros

• Pros: Interpretable, easy, fast, general-purpose

MFCC is successfully used in many tasks ... **ASR** TTS **Speaker ID Emotion classification** Language ID and many more ...

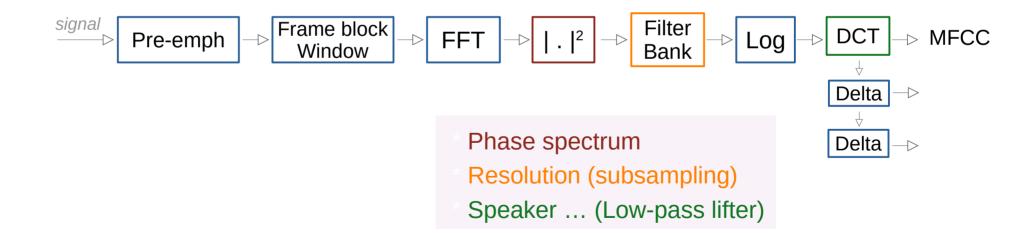
Feature Engineering: Cons (1)

• Task-blind (general-purpose)



Feature Engineering: Cons (1)

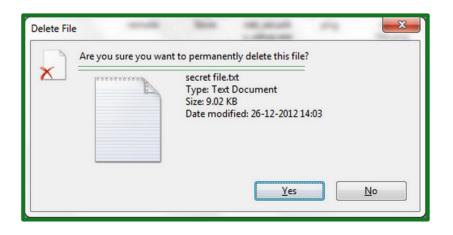
• Task-blind (general-purpose)


Loweimi et al.

Prototypes

Feature Engineering: Cons (2)

• Suboptimal info loss



Feature Engineering: Cons (2)

- Suboptimal info loss
 - Lost info is lost permanently



Feature Engineering: Cons (2)

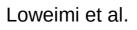
• Suboptimal info loss

¹ Centre for Speech Technology Research (CSTR), University of Edinburgh, UK ² Department of Engineering, King's College London, UK

Feature Engineering: Cons (3)

• Suboptimal info filtering

Optimal Info Filtering: Pass through ONLY relevant/useful info



Feature Engineering: Cons (3)

- Suboptimal info filtering
 - Irrelevant/nuisance info/variability passed through

Feature Engineering: Cons (2) & (3)

- Suboptimal info loss/filtering
 - Lost info is lost permanently
 - Irrelevant/nuisance info/variability passed through

... The useful information which is not passed to the ASR system is <u>lost</u> <u>forever</u>. On the other hand, <u>irrelevant information</u> which is not removed has to be dealt with by the ASR system, often at <u>significant expense</u>.

Hermansky et al., "Perceptual Properties of Current Speech Recognition Technology", Proceedigs of eht IEEE, 2013

Feature Engineering: Cons (2) & (3)

- Suboptimal info loss/filtering
 - Lost info is lost permanently
 - Irrelevant/nuisance info/variability passed through

Speech Acoustic Modelling using Raw Source and Filter Components

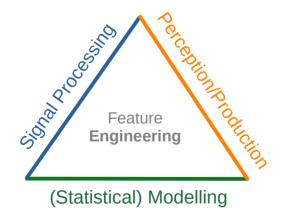
Erfan Loweimi¹, Zoran Cvetkovic², Peter Bell¹, and Steve Renals¹

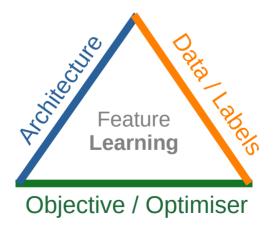
¹ Centre for Speech Technology Research (CSTR), University of Edinburgh, UK ² Department of Engineering, King's College London, UK {e.loweimi, peter.bell, s.renals}@ed.ac.uk zoran.cvetkovic@kcl.ac.uk

> Submitted to INTERSPEECH 2021 ... task-irrelevant info could be useful <u>if</u> ...

Feature Learning: Goal

• Goal: Learn the pipeline, instead of engineering





Feature Learning: Design

• Design: Architecture, Data/Labels, Objective/Optimiser

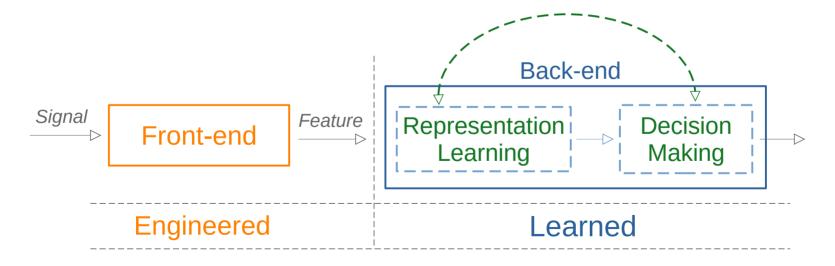
Feature Learning: Pros (1)

• Pros: Task-specific, general-purpose ...

Feature Learning: Pros (1)

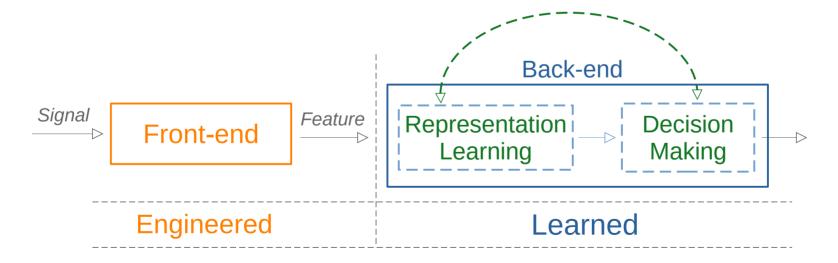
• Pros: Task-specific, general-púrpose ...

. . .



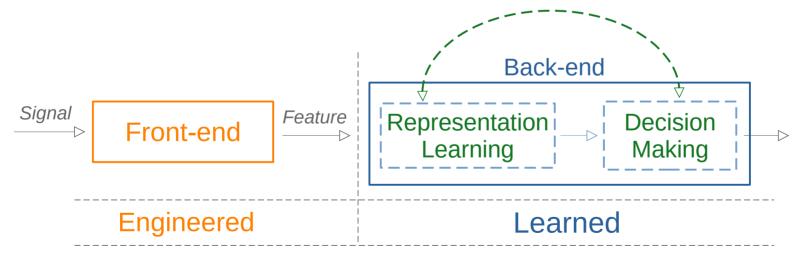
Feature Learning: Pros (2)

• Pros: Joint learning



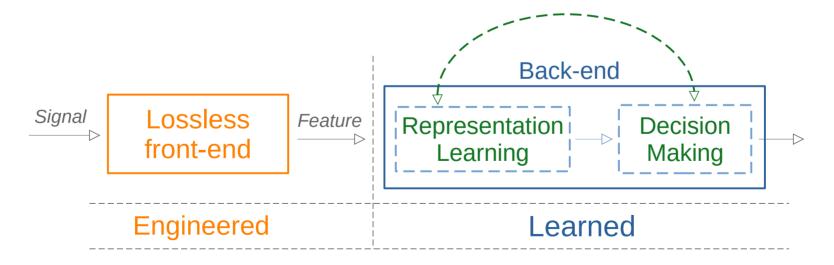
Feature Learning: Caveat

• Info lost in engineering stage is lost permanently ...

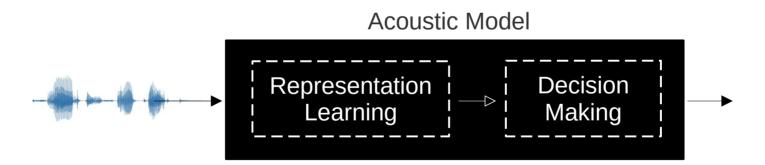


Feature Learning: Caveat

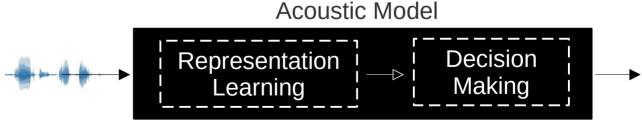
- Info lost in engineering stage is lost permanently ...
 - upperbounds performance
 - machinery cannot generate info



Feature Learning – Caveat Solution


- Lossless front-end (signal is uniquely recoverable from feature)
 - Examples: Raw waveform, Mag+Sign, ...

Feed the model with raw waveform



• Pros:

- Lossless front-end
- Task-specific
- Joint optimisation
- Interpretability

- Cons:
 - High-dim ... hardware + curse of dimensionality (?)
 - Info disentanglement is challenging
 - Task-specific

Solutions:

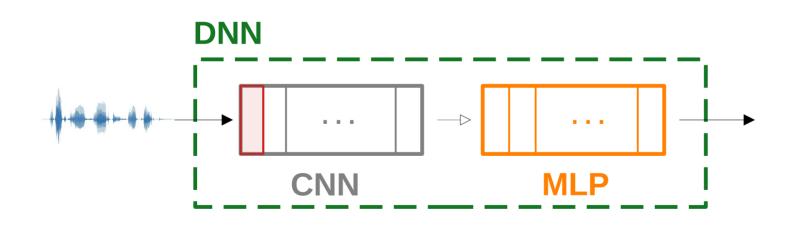
- Data ↔ High-dim + info disentanglement
- Constraint (arch., regular./norm) ↔ High-dim
- Adaptation ↔ Task-specific

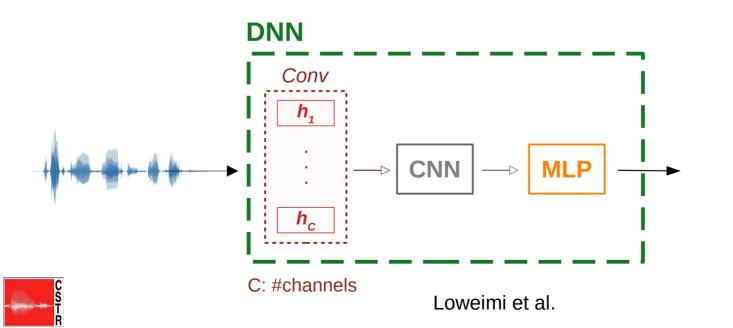
Solutions:

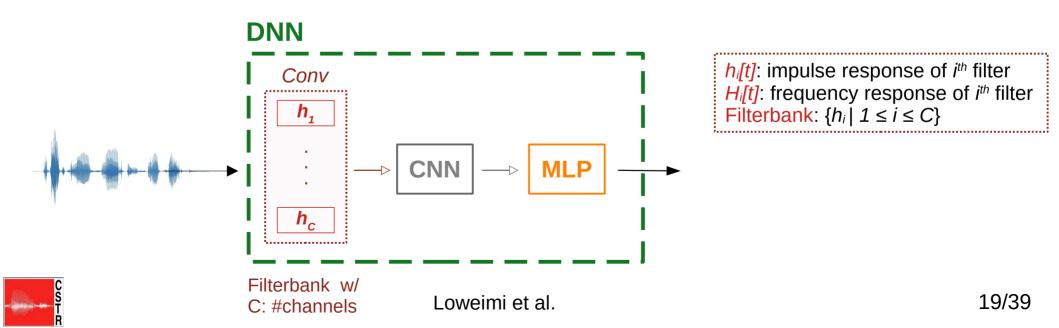
- Data ↔ High-dim + info disentanglement
- Constraint (arch., regular./norm) ↔ High-dim
- Adaptation ↔ Task-specific

ACOUSTIC MODEL ADAPTATION FROM RAW WAVEFORMS WITH SINCNET

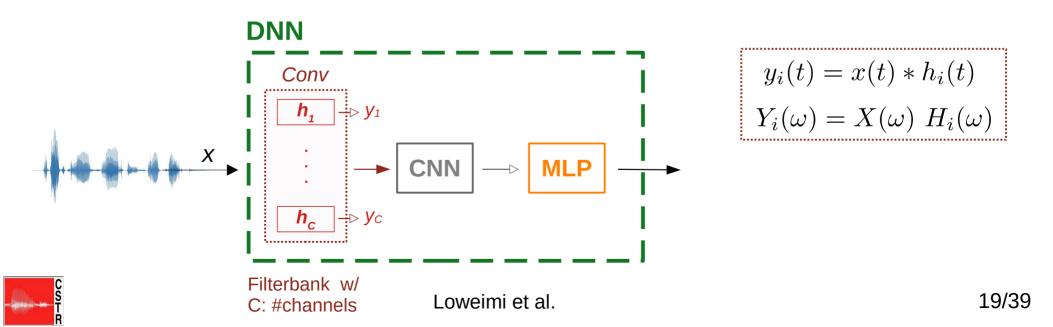
Joachim Fainberg, Ondřej Klejch, Erfan Loweimi, Peter Bell, Steve Renals


Centre for Speech Technology Research, University of Edinburgh, United Kingdom

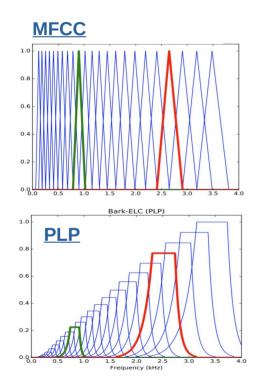

• Pros: ... Interpretability ...

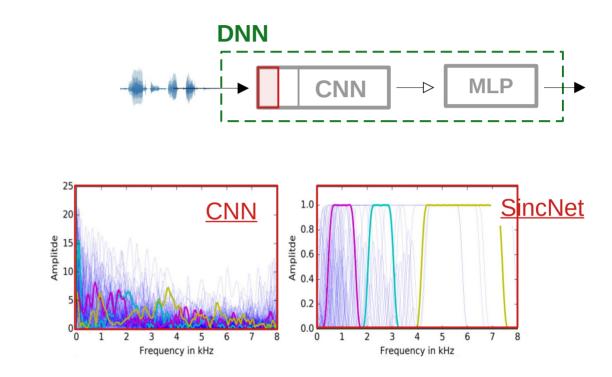


- Pros: ... Interpretability ...
 - First layer in CNN \rightarrow Filterbank \rightarrow Time-Frequency Analysis (TFA)

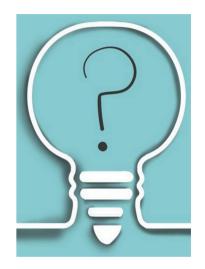


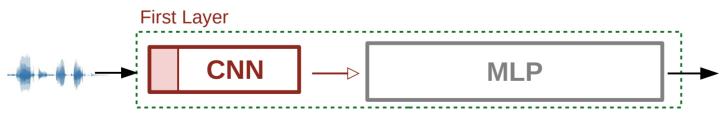
- Pros: ... Interpretability ...
 - First layer in CNN \rightarrow Filterbank \rightarrow TFA




- Pros: ... Interpretability ...
 - First layer in CNN \rightarrow Filterbank \rightarrow TFA

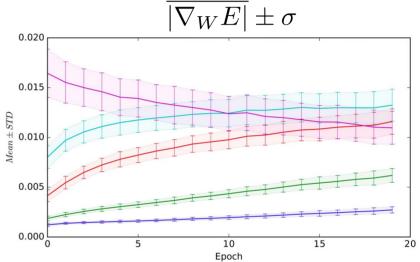
Engineered vs Learned Filterbank

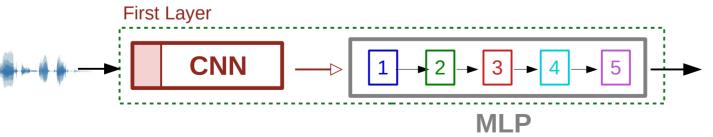

Loweimi et al., et al. On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters, Interspeech 2019 Listen! 14, Apr, 2020; Parametric CNNs for raw waveform modelling, Slides



Gradient Vanishing & First Layer

• To what extent is the *gradient vanishing* problematic?





Gradient Vanishing & First Layer

• To what extent is the *gradient vanishing* problematic?

Outline

- Raw waveform acoustic modelling
- Dynamics
 - Dynamics \leftrightarrow Temporal evolution ... during training
- Robustness
- Conclusion

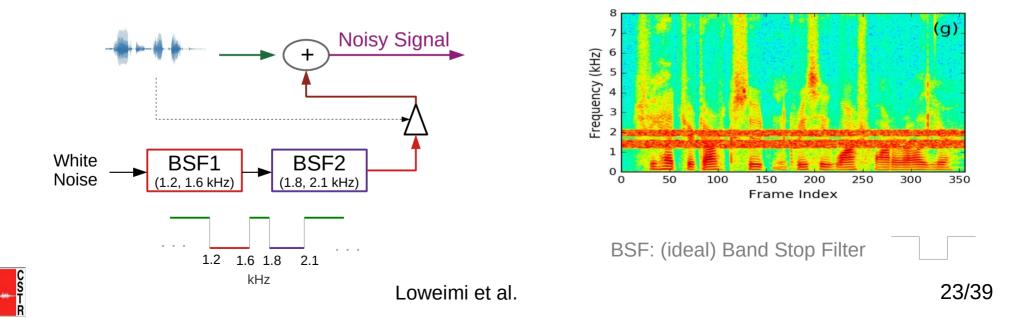
First Layer ... TFA ... Questions ...

• To what extent is it "vulnerable to gradient vanishing"?

First Layer ... TFA ... Questions ...

- To what extent is **<u>it</u>** "vulnerable to gradient vanishing"?
- What is its training "dynamics" (temporal evolution)?
- How "optimal" are the learned filters?
- How much first layer dynamics correlate with CE/WER?

First Layer ... TFA ... Questions ...

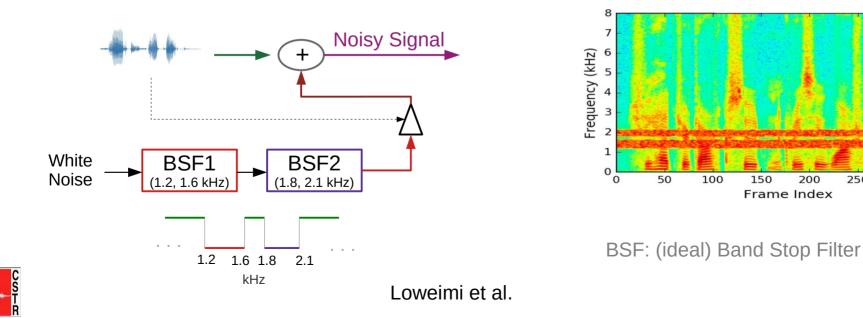

- To what extent is **<u>it</u>** "vulnerable to gradient vanishing"?
- What is its training "dynamics" (temporal evolution)?
- How "optimal" are the learned filters?
- How much first layer dynamics correlate with CE/WER?
- How to investigate all of these?
 - Framework? Task? Metric(s)?

Framework: Task

- Modify TIMIT as follows ...
 - Attack two subbands, leave a narrow clean subband in between

Framework: Task

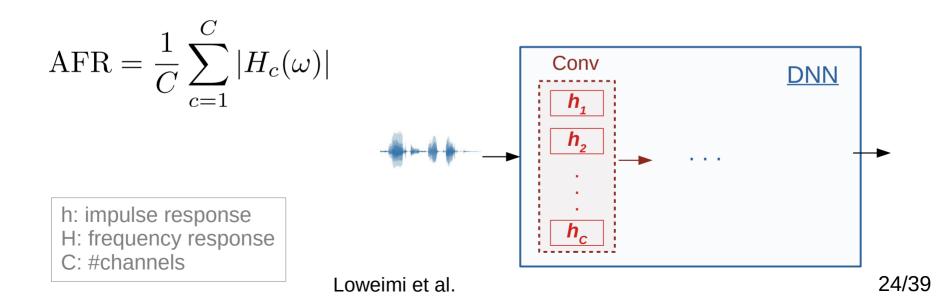
a


350

23/39

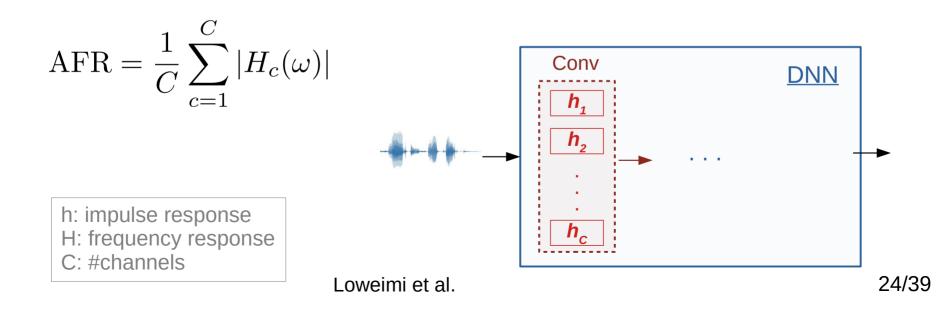
250

300


- Modify TIMIT as follows
- Advantage: optimal solution (TFA) is known

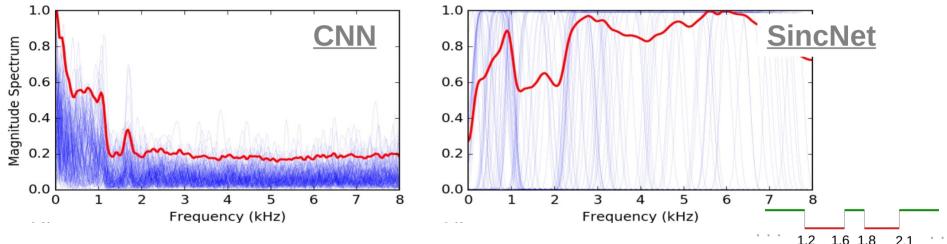
Framework: Metric

• Average Frequency Response (AFR)

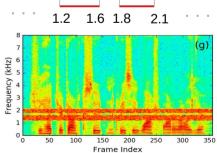


Framework: Metric

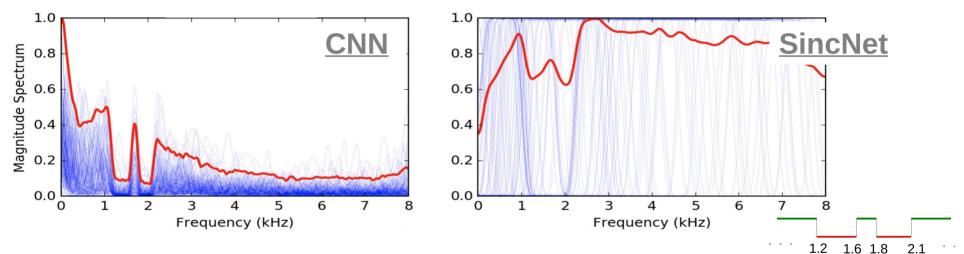
- Average Frequency Response (AFR)
 - A proxy for the frequency response of the first layer

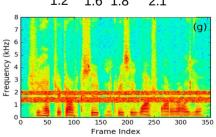


Setup

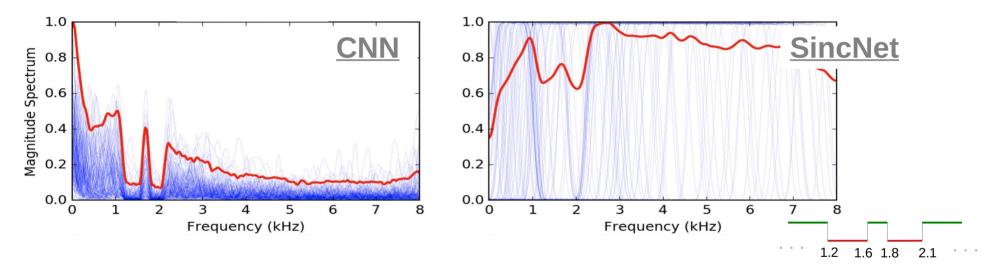

- Raw waveform models: CNN and SincNet
- Database: TIMIT, Aurora-4 and WSJ
- Noise: AWGN* \rightarrow BSF[†]1 \rightarrow BSF[†]2 \rightarrow SNR: 0 dB
- DNN: CNN-1D (4L) \rightarrow FC (5L) \rightarrow Softmax
- Toolkit: PyTorch-Kaldi, default setting

AFR ... 1st epoch

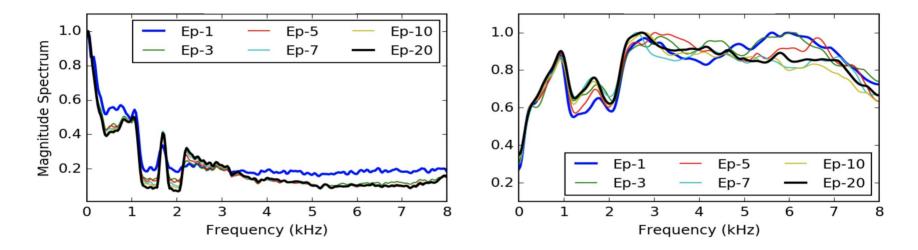

- SincNet approx. finds the noisy subbands
 - Learns faster than CNN ← fewer params



AFR ... 20th epoch

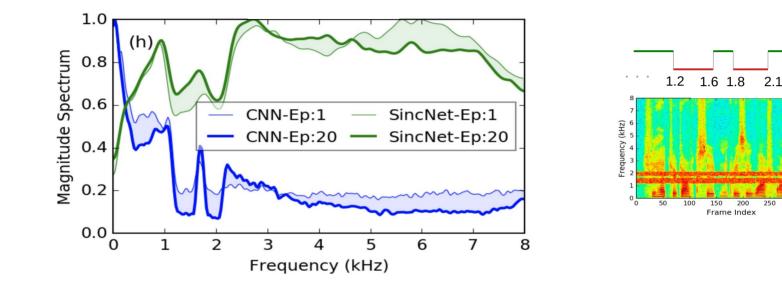

- Both find out the noisy and clean subbands
- CNN has a higher spectral resolution

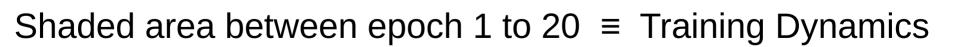
AFR ... 20th epoch



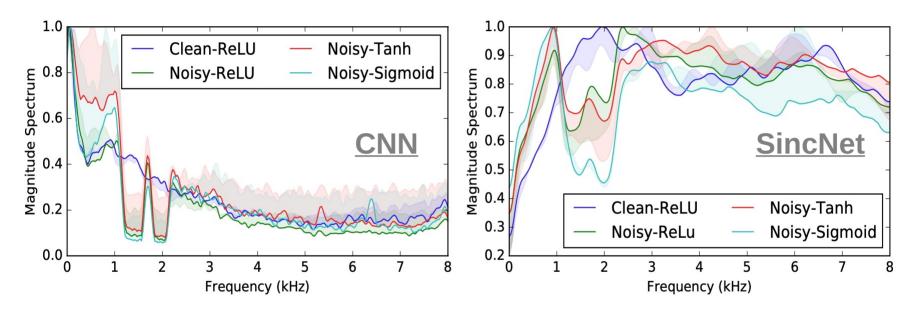
- Both find out the noisy and clean subbands
- Solving an enhancement problem using ASR labels (?)

Temporal Evolution of AFR (1)

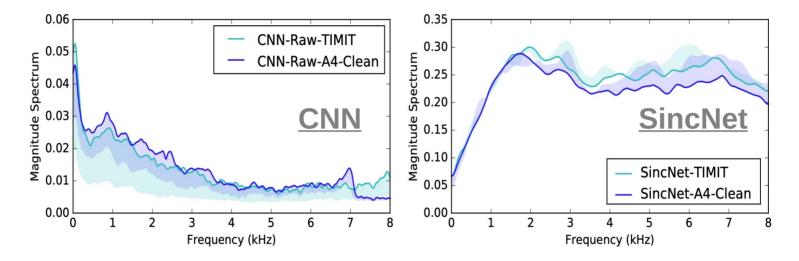



- AFR change rate reduced for higher epochs
- After 10 epochs, AFR converges

Temporal Evolution of AFR (2)

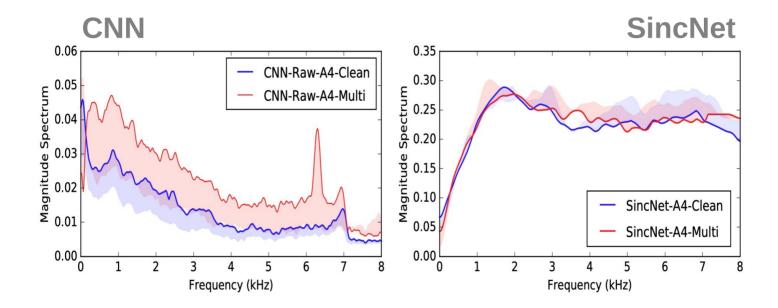


Effect of Non-linearity



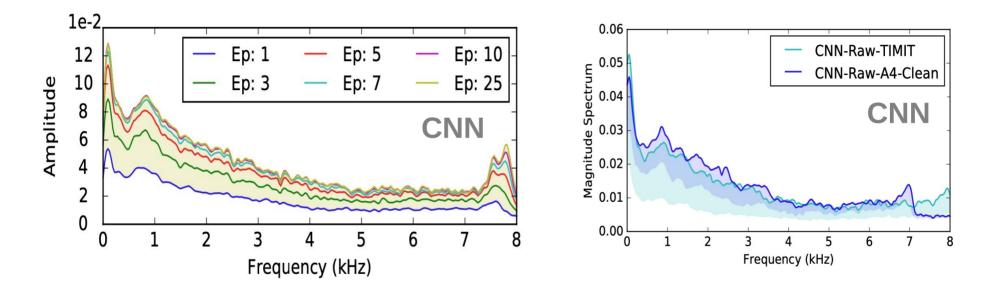
- Tanh & Sigmoid \rightarrow larger shaded area \rightarrow slower convergence
- ReLU \rightarrow smaller shaded area (CNN) \rightarrow faster conv \leftarrow Sparsity

Database Effect: TIMIT vs Aurora-4 (A4)



- AFR for A4-Clean and TIMIT are almost similar
- Shaded area for A4 is smaller, especially for CNN-Raw

Database Effect: A4, Clean vs Multi

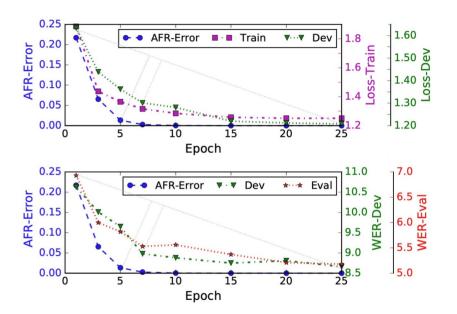


- Shaded area is larger for A4 Multi-style
 - Richer variability \rightarrow More to learn!

Database Effect: WSJ

• AFR is almost similar for these databases (all clean)

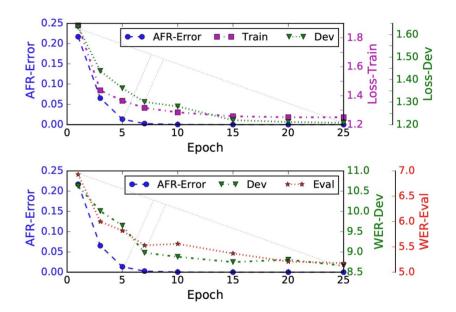
Correlation of AFR & {CE,WER}


- Database: WSJ
- $AFR_{Error} = MSE\{AFR_{ep} AFR_{optimal}\}$

- Assuming $AFR_{optimal} \equiv AFR_{25}$

Correlation of AFR & {CE,WER}

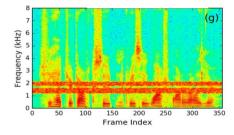
- Database: WSJ
- $AFR_{Error} = MSE\{AFR_{ep} AFR_{25}\}$
- Similar dynamics ... knee points ...

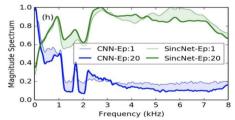


Correlation of AFR & {CE,WER}

- Database: WSJ
- $AFR_{Error} = MSE\{AFR_{ep} AFR_{25}\}$
- Similar dynamics ... knee points ...
- AFR temporal evolution highly correlates with CE/WER dynamics

	CE-Train	CE-Dev	WER-Dev	WER-Eval
Corr	0.99	0.94	0.88	0.95

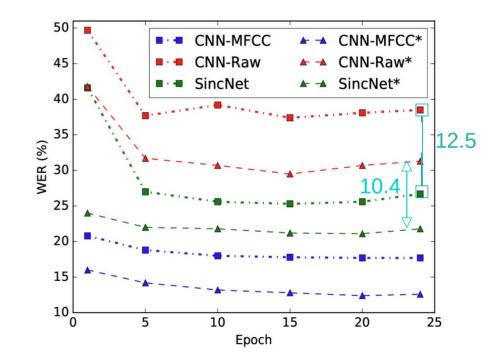




Outline

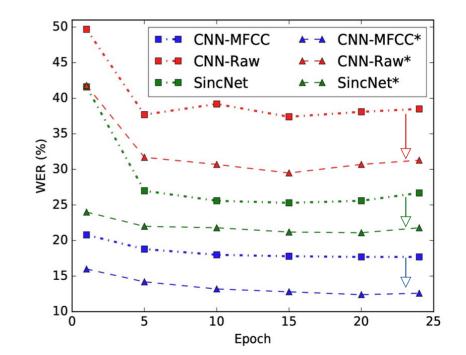
- Raw waveform acoustic modelling
- Dynamics
- Robustness
 - How robust the raw waveform models are?
 - How the performance can be improved?
- Conclusion

Setup

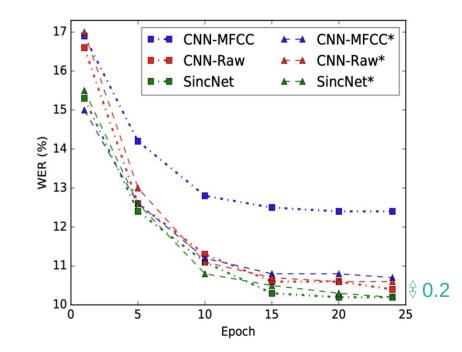

- DNNs built using PyTorch-Kaldi
- Databases: TIMIT, Aurora-4, WSJ
- Frame length/shift: 25/10ms ↔ MFCC; 200/10ms ↔ Raw wave
- Context length: ±5 for MFCC, 0 for raw waveform
- Feature normalisation for raw waveform was done dimension-wise, similar to MFCC
 - * \rightarrow Mean-Var Normalisation at utterance level
 - $\uparrow \rightarrow$ Mean-Var Normalisation at speaker level

Aurora-4, Clean Training

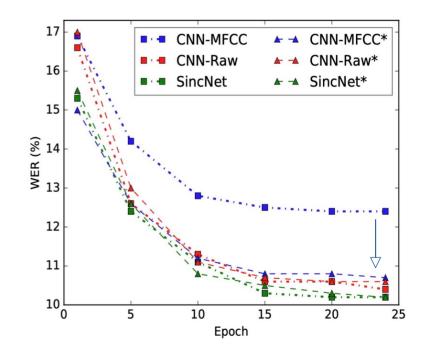
- $WER_{MFCC} < WER_{FBank} < WER_{Raw}$
- WER gap between SincNet and CNN-raw is large



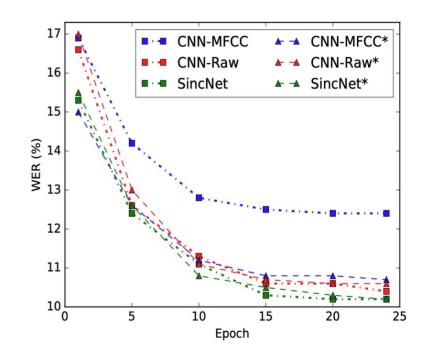
Aurora-4, Clean Training


- WER_{MFCC} < WER_{FBank} < WER_{Raw}
- WER **gap** between SincNet and CNN-raw is large
- MVN* helpful for all ...
 - [abs, Rel.] Gain in % (epoch 25)
 - MFCC → [5.1, 30.0]
 - CNN → [7.5, 19.4]
 - SincNet → [4.3, 16.8]

Aurora-4, Multi-condition Training


- $WER_{FBank} < WER_{Raw} < WER_{MFCC}$
- WER gap between CNN and SincNet is very small

Aurora-4, Multi-condition Training


- WER_{FBank} < WER_{Raw} < WER_{MFCC}
- WER **gap** between CNN and SincNet is very small
- Feature normalisation ...
 - helpful for MFCC
 - does NOT help raw waveform

Aurora-4, Multi-condition Training

- WER_{FBank} < WER_{Raw} < WER_{MFCC}
- WER gap between CNN and SincNet is very small
- Feature normalisation ...
 - helpful for MFCC
 - does NOT help raw waveform
- How can we reduce WER?

- **Detour** \rightarrow WSJ is not for robustness!
- Raw waveform outperforms others

$$- WER_{Raw} < WER_{FBank} < WER_{MFCC}$$

 Table 2: WSJ WER for different front-ends.

	$MFCC^{\dagger}$	$FBank^{\dagger}$	CNN-Raw	Sinc-Raw
Dev93	10.4	9.1	8.6	8.5
Eval92	6.8	5.9	5.1	5.0

- **Detour** \rightarrow WSJ is not for robustness
- Raw waveform outperforms others
 - $WER_{Raw} < WER_{FBank} < WER_{MFCC}$
- Why? More data (81 h)

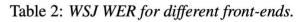
Table 2:	WSJ	WER for	different	front-ends.
----------	-----	---------	-----------	-------------

	$MFCC^{\dagger}$	$FBank^{\dagger}$	CNN-Raw	Sinc-Raw
Dev93	10.4	9.1	8.6	8.5
Eval92	6.8	5.9	5.1	5.0

- **Detour** \rightarrow WSJ is not for robustness
- Raw waveform outperforms others
 - $WER_{Raw} < WER_{FBank} < WER_{MFCC}$
- Why? More data (81 h)
 - **ONLY** data amount? TIMIT \rightarrow ...

Table 2: WSJ	WER for different front-ends.
--------------	-------------------------------

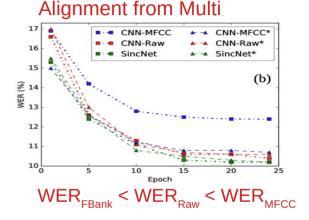
	$MFCC^{\dagger}$	$FBank^{\dagger}$	CNN-Raw	Sinc-Raw
Dev93	10.4	9.1	8.6	8.5
Eval92	6.8	5.9	5.1	5.0


Table 2: TIMIT PER for different kernels (200ms).						
MLP CNN Sinc Sinc ² Gamma Gauss						Gauss
PER 18.5 18.2 17.6 16.9 17.2 17.0						17.0

Loweimi et al., et al. On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters, Interspeech 2019

- **Detour** \rightarrow WSJ is not for robustness
- Raw waveform outperforms others
 - WER_{Raw} < WER_{FBank} < WER_{MFCC}
- Why? More data (81 h)
 - **ONLY** data amount? TIMIT \rightarrow ...
- Hypothesis:
 - Teacher/label error is more problematic for high-dim features

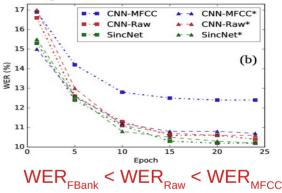
	$MFCC^{\dagger}$	$FBank^{\dagger}$	CNN-Raw	Sinc-Raw
Dev93	10.4	9.1	8.6	8.5
Eval92	6.8	5.9	5.1	5.0


Table 2: TIMIT PER for different kernels (200ms).

	MLP	CNN	Sinc	Sinc^2	Gamma	Gauss
PER	18.5	18.2	17.6	16.9	17.2	17.0

Back to Aurora-4, Multi-condition

- Reduce teacher/label error via using a better alignment
- Better alignment obtained using clean training data


Back to Aurora-4, Multi-condition

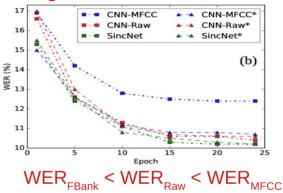
Alignment from Clean

WER_{Raw} < WER_{FBank} < WER_{MECC}

A	В	С	D	Ave
3.5	6.1	4.6	8.3	6.7
3.0	5.2	3.3	6.4	5.4
2.7	4.4	4.0	6.4	5.1
2.9	4.6	3.9	6.7	5.3
	3.0 2.7	3.0 5.2 2.7 4.4	3.0 5.2 3.3 2.7 4.4 4.0	3.0 5.2 3.3 6.4 2.7 4.4 4.0 6.4

Alignment from Multi

- Reduce teacher/label error via using a better alignment
- Better alignment obtained using clean training data



Back to Aurora-4, Multi-condition

Alignment from Clean

Feature	Α	В	С	D	Ave	
CNN-MFCC*	3.5	6.1	4.6	8.3	6.7	
CNN-FBank*	3.0	5.2	3.3	6.4	5.4	
CNN-Raw	2.7	4.4	4.0	6.4	5.1	
SincNet-Raw	2.9	4.6	3.9	6.7	5.3	
WER _{Raw} < WER _{FBank} < WER _{MECC}						

Alignment from Multi

- Reduce teacher/label error via using a better alignment
- Better alignment obtained using clean training data ...

... is more beneficial to raw waveform models

Outline

- Raw waveform acoustic modelling for ASR
- Dynamics
- Robustness
- Conclusion

Conclusion

- Keywords: ASR, Raw waveform, Dynamics, Robustness
- **Dynamics** = Temporal evolution ... first conv layer
 - <u>Task</u>: TIMIT+ Special Noise
 - <u>Metric</u>: Average Frequency Response (AFR)
 - What was studied: Gradient vanishing, optimality, resolution, non-linearity, database, correlation of AFR with CE & WER

Robustness

- Mismatched condition \rightarrow feature normalisation
- Matched condition → better alignment (lower teacher error)
 Loweimi et al.

That's It!

- Thanks for your attention!
- Q/A?

• Paper link

