

Understanding and Interpreting DNNs for Speech Recognition

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), The University of Edinburgh

DNNs are GREAT ...

DNNs are GREAT ... BUT are a **black box**

Importance of Understanding

• Trust

IBM

What's next for AI Featured articles V Featured interviews V

Building trust in AI

NEWS THREATS POLITICS BUSINESS TECH IDEAS

Solving One of the Hardest Problems of Military AI: Trust

Loweimi et al

BBC	Q Sig	n in	÷	News	Sport	Weather	iPlayer	Sounds	
NEWS									
Home UK	World	Business	Politics	Tech	Science	Health	Family & E	Education	E
Business Your Money Market Data Companies Economy									

Can we trust AI if we don't know how it works?

By Marianne Lehnis Technology of Business reporter

① 15 June 2018

f 😔 🈏 🗹 < Share

What's it thinking? Will AI become too clever for us?

We're at an unprecedented point in human history where artificially intelligent machines could soon be making decisions that affect many aspects of our lives. But what if we don't know how they reached their decisions? Would it matter?

Importance of Understanding

Control

Importance of Understanding

- The Joy of Science
- Better practice

ICASSP2019

ON THE USEFULNESS OF STATISTICAL NORMALISATION OF BOTTLENECK FEATURES FOR SPEECH RECOGNITION

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), School of Informatics, The University of Edinburgh {e.loweimi, peter.bell, s.renals}@ed.ac.uk

INTERSPEECH 2019

On Learning Interpretable CNNs with Parametric Modulated Kernel-based Filters

Erfan Loweimi, Peter Bell and Steve Renals

Centre for Speech Technology Research (CSTR), School of Informatics, University of Edinburgh {e.loweimi, peter.bell, s.renals}@ed.ac.uk

Outline

- PART I
 - Interpreting DNN's Activations
 - ICASSP 2019
- PART II
 - Interpreting DNN's Weights
 - Submitted to INTERSPEECH 2019

Outline

- PART I
 - Interpreting DNN's Activations
 - ICASSP 2019
- PART II
 - Interpreting DNN's Weights
 - Submitted to INTERSPEECH 2019

"I have always thought the actions of men the best interpreters of their thoughts."

John Locke

"I have always thought the activations of NNs the best interpreters of their thoughts."

– Unknown :-)

Part I Outline

Conduct a series of statistical studies on activations

• (Re)-Explaining some observations

• Statistical Normalisation of bottleneck features for ASR

DNNs from Statistical Standpoint

- Effect of the activation function *f*(.) on the density ...
 - ➤ x: input
 W: weights
 - Z: pre-activation y: activation

$$y = f(\underbrace{\mathbf{w}^{\mathbf{T}}\mathbf{x}}_{z}) = f(z) \Rightarrow z = f^{-1}(y)$$

DNNs from Statistical Standpoint

- Effect of the activation function *f*(.) on the density ...
 - ➤ x: input
 W: weights
 - Z: pre-activation y: activation

DNNs from Statistical Standpoint

- Effect of the activation function *f*(.) on the density ...
 - ➤ x: input
 W: weights
 - Z: pre-activation y: activation

$$\mathbf{P}_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(f^{-1}(y))$$

$$y = f(z) = \tanh(z)$$

$$P_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(f^{-1}(y))$$

$$y = f(z) = \tanh(z)$$
$$f^{-1}(y) = \frac{1}{2}\log\frac{1+y}{1-y} \quad , \quad \frac{d}{dy}f^{-1}(y) = \frac{1}{1-y^2}$$

$$P_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(f^{-1}(y))$$

$$y = f(z) = \tanh(z)$$

$$f^{-1}(y) = \frac{1}{2}\log\frac{1+y}{1-y} , \quad \frac{d}{dy}f^{-1}(y) = \frac{1}{1-y^2}$$

$$\Rightarrow P_Y^{tanh}(y) = \frac{1}{1-y^2}P_Z(\frac{1}{2}\log\frac{1+y}{1-y})$$

$$\mathbf{P}_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(f^{-1}(y))$$

$$P_Y^{\text{tanh}}(y) = \frac{1}{1 - y^2} P_Z(\frac{1}{2}\log\frac{1 + y}{1 - y})$$

$$P_Y(y) = \left| \frac{d}{dy} f^{-1}(y) \right| P_Z(f^{-1}(y))$$

$$P_Y^{\text{tanh}}(y) = \frac{1}{1 - y^2} P_Z(\frac{1}{2}\log\frac{1 + y}{1 - y})$$

Distribution of the pre-activation, $P_z(z)$, is required!

Distribution of the Pre-Activation (Z)

• *Pre-activation, Z,* is a weighted sum ...

$$z = \mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + \dots + w_N x_N$$

Distribution of the Pre-Activation (Z)

- *Pre-activation, Z,* is a weighted sum
 - Z is approximately Gaussian \leftarrow CLT*

$$z = \mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + \dots + w_N x_N$$

$$\mathbf{z} \stackrel{\mathbf{v}}{\sim} \mathcal{N}(z; \mu_z, \sigma_z^2) \qquad \qquad \mathbf{x} \stackrel{\mathbf{w}}{\longrightarrow} \boxed{\boldsymbol{\Sigma}} \stackrel{\mathbf{z}}{\longleftarrow} \mathbf{y}$$

Distribution of the Pre-Activation (Z)

- *Pre-activation, Z,* is a weighted sum
 - Z is approximately Gaussian \leftarrow CLT
 - $\mu_z \rightarrow 0$: No preference for positive/negative values

$$\mathbf{z} \stackrel{\cdot}{\sim} \mathcal{N}(z; 0, \sigma_z^2)$$

$$\mathbf{x} \longrightarrow \mathbf{x} \xrightarrow{\mathbf{z}} \mathbf{y}$$

Distribution of the Activation (y)

• Now we can work out this ...

Distribution of the Activation (y)

• After some algebraic manipulation ...

Distribution of the Activation (y)

• After some algebraic manipulation ...

Activation Distribution Factors – Tanh

Statistical Interpretation (1)

Loweimi et al

3

Statistical Interpretation (1)

Loweimi et al

У

Statistical Interpretation (1)

Loweimi et al

8/40

Loweimi et al

 σ_z is a *shape* parameter

$$\sigma_z > 1 \Rightarrow F^{<1>}$$
 is dominant
 $\sigma_z < 1 \Rightarrow F^{<2>}$ is dominant

Empirical Studies

- Database: WSJ-5k (SI-84)
- Bottleneck (BN) features extracted using Kaldi
- DNN: TDNN (nnet3), 7 layers: $5x1024 \rightarrow BN(26D) \rightarrow output$
- Features: log-Filterbank, mean-var normalised, ±5 frames
- #Frames: 5.4 M

DNN Architecture

11/40

DNN Architecture

Mean/Std of Pre-activation Z – Error-bar

• $\mu_z \rightarrow 0$ approximation is reasonable ...

Mean/Std of Pre-activation Z – Error-bar

- $\mu_z \rightarrow 0$ approximation is reasonable ...
- $\sigma_z > 1 ==>>$ DNN operates in the *non-linear mode*

Properties of Z and Y – Empirical Study

• Distribution of Y matches the derived equation ($\sigma_z > 1$)

$$P_Y^{\text{tanh}}(y) = \frac{1}{1-y^2} \mathcal{N}(\frac{1}{2}\log\frac{1+y}{1-y}; 0, \sigma_z^2)$$

Explaining Two Side Observations

- As bottleneck (BN) features for ASR ...
 - Pre-activation (Z) or activation (Y)?

• Sparsity of ReLU; Why and how?

As BN Features, Pre-activation or Activation?

15/40

As BN Features, Pre-activation or Activation?

Tanh

Sigmoid

Covariance matrix of Z ...

Z Distribution is easily fitted with *diagonal GMMs*.

Sparsity of ReLU

• ReLU Advantages ...

⊘ Sparse activations

- Biologically plausible
- Info disentanglement
- Gradient propagation
 Efficient computation

Deep Sparse Rectifier Neural Networks

Xavier Glorot DIRO, Université de Montréal Montréal, QC, Canada glorotxa@iro.umontreal.ca Antoine Bordes Heudiasyc, UMR CNRS 6599 UTC, Compiègne, France and DIRO, Université de Montréal Montréal, QC, Canada antoine.bordes@hds.utc.fr Yoshua Bengio DIRO, Université de Montréal Montréal, QC, Canada bengioy@iro.umontreal.ca

AISTATS 2011

- Glorot et al., "Deep Sparse Rectifier Neural Networks", AISTATS 2011
 - Assuming the probability of positive and negative pre-activations is equal, half of the activations (50%) will be zero ...

- Our argument ...
 - Remember Tanh, linear and non-linear zones ...

Non-linear modeLinear mode

- Our argument ...
 - To operate in the non-linear mode, activations must be around **0**⁺

Blocks information
 Non-linear mode (switch)
 Linear mode

• Coincidence of non-linear operating zone with 0⁺

Blocks information
 Non-linear mode (switch)
 Linear mode

Sparsity of ReLU -- Empirical Results

• Distribution of the pre-activation (z) and activation (y) for ReLU ...

Feature Normalisation for DNNs

Feature Normalisation for DNNs

CS TR

Feature Post-processing for ASR

- Minimise test/train mismatch
 - mean(-variance) normalisation, Gaussianisation

Feature Post-processing for ASR

- Minimise test/train mismatch
 - mean(-variance) normalisation, Gaussianisation
- Orthogonalisation or Decorrelation
 - PCA or DCT

Feature Post-processing for ASR

- Minimise test/train mismatch
 - mean(-variance) normalisation, Gaussianisation
- Orthogonalisation or Decorrelation
 - PCA or DCT
- Feature Enhancement (Noise Robustness)
 - Cannot do (g)VTS \rightarrow Environment model is not available!
 - Histogram Equalisation (HEQ)

ASR Experiments – Aurora-4 Noisy Training Set (only Additive)

Aurora-4 Train Set:

- Clean+Additive noise

Aurora-4 Test Sets:

- A: Clean (match)
- B: Additive noise (match)
- C: Channel (mismatch)
- D: Additive+Channel (match)
- MN: Mean normalised
- MVN: Mean-variance normalised
- Gauss: Gaussianisation
- HEQ: Histogram Equalisation

Table 1: WER for Aurora-4 (Kaldi-LDA-MLLT).

Feature	А	В	С	D	Ave4
BN (baseline)	3.87	7.96	21.80	32.72	16.58
BN+MN	3.64	7.66	21.02	32.20	16.13
BN+MVN	4.07	8.31	20.34	33.04	16.44
BN+Gauss	4.15	8.12	20.18	32.67	16.28
BN+HEQ	3.96	7.43	19.76	30.87	15.50
BN+PCA	3.75	7.88	21.56	32.46	16.41
BN+DCT	3.77	7.77	21.76	32.49	16.44

ASR Experiments – Aurora-4 Noisy Training Set (only Additive)

BN post-processing is helpful.		Table 1: WER	$R \ for \ A$	urora-4	l (Kaldi-	LDA-M	LLT).
		Feature	A	B		D	Ave4
	tion	BN (baseline)	3.87	7.96	21.80	32.72	16.58
MN is consistently useful.		BN+MN	3.64	7.66	21.02	32.20	16.13
		BN+MVN	4.07	8.31	20.34	33.04	16.44
		BN+Gauss	4.15	8.12	20.18	32.67	16.28
HEQ → highest WER reduction – Testset C: 2% WER reduction		BN+HEQ	3.96	7.43	19.76	30.87	15.50
		BN+PCA	3.75	7.88	21.56	32.46	16.41
		BN+DCT	3.77	7.77	21.76	32.49	16.44

Decorrelation has no effect.

– MN: Mean normalised

- Gauss: Gaussianisation

– MVN: Mean-variance normalised – HEQ: Histogram Equalisation

Wrap-up for Part I

- *Statistical* properties of Z and Y was investigated ...
 - Analytically & Empirically
- Re-explanations for ...
 - Pre-activation \rightarrow easily fitted with *diagonal GMMs*
 - Sparsity of ReLU \rightarrow Non-linearity
- *Post-processing* of BN features was investigated ...
 - Up to 2% absolute (9% relative) WER reduction achieved

Outline

- PART I
 - Interpreting DNN's Activations
 - ICASSP 2019
- PART II
 - Interpreting DNN's Weights
 - Submitted to INTERSPEECH 2019

Part II Outline

• Acoustic Modelling from Raw Waveform via **SincNet**

- CNNs with Parametric Kernel-based Filters
 - Sinc²Net, GammaNet, GaussNet

• Perceptual/Statistical Studies on Learned Filters

Raw Waveform Modelling via SincNet

SincNet

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

Acoustic Modelling from Conventional Features

Conventional Features ↔ Fourier magnitude-based

Acoustic Modelling from Raw Waveform

• Advantages w.r.t. Fourier-based features

Acoustic Modelling from Raw Waveform

- Advantages w.r.t. Fourier-based features
 - Learned vs handcrafted pipeline
 - Task-oriented \rightarrow optimal for the given tasks/labels
 - Employ all signal info \rightarrow including *all-pass* and *phase* spec.
 - Learning basis functions \rightarrow instead of Fourier's complex exp.

Acoustic Modelling from Raw Waveform

- Advantages w.r.t. Fourier-based features
 - Learned vs handcrafted pipeline
 - Task-oriented \rightarrow optimal for the given tasks/labels
 - Employ all signal info \rightarrow including *all-pass* and *phase* spec.
 - Learning basis functions \rightarrow instead of Fourier's complex exp.

E. Loweimi, "Robust Phase-based Speech Signal Processing; From Source-filter Separation to Model-based Robust ASR," Ph.D. dissertation, University of Sheffield, Sheffield, UK, Feb 2018. [Online]. Available: http://etheses.whiterose.ac.uk/19409/

SincNet – Definition

- Convolutional layer with ideal bandpass filters
 - Impulse response \leftarrow Sinc

SincNet – Filters

Impulse & Frequency Responses

SincNet – Filters

• Filters' mathematical definition ...

$$\begin{split} h(t;\theta^{(i)}) &= 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t) \\ H(f;\theta^{(i)}) &= \Pi(\frac{f}{2f_2^{(i)}}) - \Pi(\frac{f}{2f_1^{(i)}}) \end{split}$$

i: filter index in the filterbank

SincNet – Filters Shape

$$\begin{split} h(t;\theta^{(i)}) &= \frac{2f_2^{(i)}sinc(2f_2^{(i)}t)}{2f_2^{(i)}} - 2f_1^{(i)}sinc(2f_1^{(i)}t) \\ H(f;\theta^{(i)}) &= \frac{\Pi(\frac{f}{2f_2^{(i)}})}{2f_2^{(i)}} - \Pi(\frac{f}{2f_1^{(i)}}) \end{split}$$

SincNet – Parameters

• Parameter Set (Θ) \rightarrow cut-off frequencies: $f_1 \& f_2$

$$\begin{split} h(t;\theta^{(i)}) &= 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t) \\ H(f;\theta^{(i)}) &= \Pi(\frac{f}{2f_2^{(i)}}) - \Pi(\frac{f}{2f_1^{(i)}}) \end{split}$$

$$\Theta = \{\theta^{(i)}\} = \{f_1^{(i)}, f_2^{(i)}\}$$

Advantages of SincNet

• Parametric vs Non-parametric

- Parametric vs Non-parametric
 - More Interpretable

CNN

CNN vs SincNet

impulse responses

SincNet impulse responses

SincNet Frequency responses

Average Frequency responses

26/40

- **Parametric** vs Non-parametric
 - More interpretable
 - Constraint on hypothesis space
 - Regularisation \rightarrow better generalisation

- **Parametric** vs Non-parametric
 - More interpretable
 - Constraint on hypothesis space
 - Regularisation → better generalisation
 - Fewer parameters
 - Less training data required
 - Faster learning/convergence

- Parametric vs Non-parametric
- Better performance on TIMIT ...
 - Lower loss and phone error rate (PER)

Creator:LibreOffice 6.0 LanguageLevel:2

General Formulation for Interpretable Kernel-based CNNs

$$h(t;\theta^{(i)}) = 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t)$$

$$h(t;\theta^{(i)}) = 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t)$$
$$h(t;\theta^{(i)}) = \frac{1}{\pi t}(\sin(2\pi f_2^{(i)}t) - \sin(2\pi f_1^{(i)}t))$$

$$h(t;\theta^{(i)}) = 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t))$$
$$h(t;\theta^{(i)}) = \frac{1}{\pi t}(\sin(2\pi f_2^{(i)}t) - \sin(2\pi f_1^{(i)}t))$$
$$\sin\alpha - \sin\beta = 2\sin\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}$$

2

$$h(t;\theta^{(i)}) = 2f_2^{(i)}sinc(2f_2^{(i)}t) - 2f_1^{(i)}sinc(2f_1^{(i)}t)$$
$$h(t;\theta^{(i)}) = \frac{1}{\pi t}(\sin(2\pi f_2^{(i)}t) - \sin(2\pi f_1^{(i)}t))$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$h^{(i)}(t) = 2B^{(i)}sinc(B^{(i)}t) \cos(2\pi f_c^{(i)}t)$$

1...

$$B^{(i)} = f_2^{(i)} - f_1^{(i)}$$
, $f_c^{(i)} = \frac{f_1^{(i)} + f_2^{(i)}}{2}$

$$h^{(i)}(t) = 2B^{(i)}sinc(B^{(i)}t) \left[\cos(2\pi f_c^{(i)}t)\right]$$

Baseband filter ≡ Kernel

Carrier

$$h^{(i)}(t) = 2B^{(i)}sinc(B^{(i)}t) \left[\cos(2\pi f_c^{(i)}t)\right]$$

Baseband filter
$$\equiv$$
 Kernel Carrier

$$h^{(i)}(t; \theta^{(i)}, f_c^{(i)}) = K(t; \theta^{(i)})$$
 carrier $(t; f_c^{(i)})$

Parameter Set:
$$\Theta = \{\theta^{(i)}, f_c^{(i)}\}$$

KernelCarrier
$$h^{(i)}(t; \theta^{(i)}, f_c^{(i)}) = K(t; \theta^{(i)})$$
 $carrier(t; f_c^{(i)})$

Learning Kernel-based Filterbanks

Learning Kernel-based Filterbanks

- Widely used in Speech processing \rightarrow MFCC
 - Perceptually more plausible than rectangular filters

- Widely used in Speech processing \rightarrow MFCC
 - Perceptually more plausible than rectangular filters

- Widely used in Speech processing \rightarrow MFCC
 - Perceptually more plausible than rectangular filters

$$K(t; \theta^{(i)}) = A^{(i)} sinc^2(B^{(i)}t)$$
$$\theta^{(i)} = \{A^{(i)}, B^{(i)}\}$$

- Widely used in Speech processing \rightarrow MFCC
 - Perceptually more plausible than rectangular filters

$$K(t; \theta^{(i)}) = A^{(i)} sinc^{2}(B^{(i)}t)$$

$$\theta^{(i)} = \{A^{(i)}, B^{(i)}\}$$
Amplitude Bandwidth
$$\theta^{(i)} = \{A^{(i)}, B^{(i)}\}$$
Loweimi et al
$$28/40$$

Learned

NIVERS AND ADDRESS

GammaNet: Gammatone Filters

- Even more biologically plausible
 - Describes impulse response of auditory filters in Cochlea

NIVERS AND ADDRESS

GammaNet: Gammatone Filters

- Even more biologically plausible
 - Describes impulse response of auditory filters in Cochlea

UNIVERSE CONTROL OF CO

GammaNet: Gammatone Filters

- Even more biologically plausible
 - Describes impulse response of auditory filters in Cochlea

$$K(t; \theta^{(i)}) = A^{(i)} t^{(N^{(i)} - 1)} e^{-2\pi B^{(i)} t}$$
$$\theta^{(i)} = \{A^{(i)}, B^{(i)}, N^{(i)}\}$$

GammaNet: Gammatone Filters

- Even more biologically plausible
 - Describes impulse response of auditory filters in Cochlea

$$K(t; \theta^{(i)}) = A^{(i)}t^{(N^{(i)}-1)}e^{-2\pi B^{(i)}t}$$

$$\theta^{(i)} = \{A^{(i)}, B^{(i)}, N^{(i)}\}$$

$$0.8$$
Order
$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.6$$

$$0.7$$

$$0.7$$

$$0.7$$

$$0.7$$

Loweimi et al

29/40

NIVERSE STREET

GammaNet: Gammatone Filters

- Even more biologically plausible
 - Describes impulse response of auditory filters in Cochlea

10

$$K(t; \theta^{(i)}) = A^{(i)}t^{(N^{(i)}-1)}e^{-2\pi B^{(i)}t}$$

$$\theta^{(i)} = \{A^{(i)}, B^{(i)}, N^{(i)}\}$$

$$\mathsf{Typical value: 4}$$

Loweimi et al

40

3.5

2.5

3.0

GaussNet: Gaussian Filters

Bell-shaped Filters

$$K(t; \theta^{(i)}) = A^{(i)} \exp(-t^2/\sigma_i^2)$$
$$\theta^{(i)} = \{A^{(i)}, \sigma^{(i)}\}$$

GaussNet: Gaussian Filters

Bell-shaped Filters

$$K(t; \theta^{(i)}) = A^{(i)} \exp(-t^2/\sigma_i^2)$$
$$\sigma_i = \frac{\sqrt{\log 2}}{2\pi B_i}$$
$$3 \text{ dB bandwidth}$$
$$(\text{Hz}) \text{ of the } i^{th} \text{ filter}$$

4

Loweimi et al

30/40

Perceptual and Statistical Studies

Filters' Centre Frequency Distribution

Filters' Centre Frequency Distribution

Higher filter concentration at low frequencies (< 2 kHz). ==>> More discriminative and selective filtering ...

$$Q^{(i)} = \frac{f_c^{(i)}}{B^{(i)}}$$

Similar trend to the perceptual measures.

It is not a random effect ...

Gammatone Filters Order --Perceptual Studies

Page - 7 -

A. <u>A Comparison of Roex and Gammatone Amplitude Spectra</u> Schofield (1985) has recently demonstrated that a gammatone filter with order 4 provides a good fit to the average auditory filters presented in Patterson (1976).

Schofield, D. (1985). Visualisations of speech based on a model of the peripheral auditory system. NPL Report DITC 62/85.

AN EFFICIENT AUDITORY FILTERBANK BASED ON

THE GAMMATONE FUNCTION

Roy Patterson and Ian Nimmo-Smith

MRC Applied Psychology Unit 15 Chaucer Road Cambridge CB2 2EF

John Holdsworth and Peter Rice

Cambridge Electronic Design &cience Park Milton Road Cambridge

December 1987

Gammatone Filters Order Perceptual vs Learned

 Table 1: Statistics of the GammaNet learned filters order.

	Mean	Median	Std	Min	Max
GammaNet	4.39	4.30	0.97	1.73	6.80

No constraint was imposed on filters order during training.

Gammatone Filters Order Perceptual vs Learned

 Table 1: Statistics of the GammaNet learned filters order.

	Mean	Median	Std	Min	Max
GammaNet	4.39	4.30	0.97	1.73	6.80

Matches with perceptual studies on human auditory system.

Loweimi et al

Experimental Results

Loweimi et al

Experimental Results – Setup

- Task: TIMIT phone recognition
- Tools: Kaldi + PyTorch-Kaldi
- Frame length: 200 ms, frame shift: 10 ms
- Optimisation: 24 Epochs, RMSprop
- Architecture: Convolutional layer + MLP + output layer
 - MLP \rightarrow 5 hidden layers, 1024 nodes, ReLU

Table 2: TIMIT PER for different kernels (200 ms).

	MLP	CNN	Sinc	Sinc^2	Gamma	Gauss
PER	18.5	18.2	17.6	16.9	17.2	17.0

Table 2: TIMIT PER for different kernels (200 ms).

	MLP	CNN	Sinc	Sinc^2	Gamma	Gauss
PER	18.5	18.2	17.6	16.9	17.2	17.0
loį	log-Filterbank Raw Waveform models					

Raw waveform models outperform log-Filterbank features.

Table 2: TIMIT PER for different kernels (200 ms).

Parametric Nets outperform non-parametric CNN.

Table 2: TIMIT PER for different kernels (200 ms).

X-Nets outperform SincNet (also are more biologically plausible).

Frame Length Effect Investigation

Optimal Frame Length: 200 ms

		J	55	J	0.0	
	25	50	100	200	300	400
CNN	30.0	21.7	18.8	18.2	18.6	19.0
SincNet	27.7	20.6	17.6	17.4	17.6	17.7
Sinc ² Net	27.1	20.7	17.3	16.9	17.4	17.7

Table 3: TIMIT PER for different frame lengths (ms).

Optimal Frame Length: 200 ms

Table 3: TIMIT PER for different frame lengths (ms).

	25	50	100	200	300	400
CNN	30.0	21.7	18.8	18.2	18.6	19.0
SincNet	27.7	20.6	17.6	17.4	17.6	17.7
$Sinc^2Net$	27.1	20.7	17.3	16.9	17.4	17.7

(1) Pros/Cons? WHY?

Optimal Frame Length: 200 ms Pros/Cons

Table 3: TIMIT PER for different frame lengths (ms).

	25	50	100	200	300	400
CNN	30.0	21.7	18.8	18.2	18.6	19.0
SincNet	27.7	20.6	17.6	17.4	17.6	17.7
Sinc ² Net	27.1	20.7	17.3	16.9	17.4	17.7

Suppressing harmful **mid-term** properties (e.g. speaker-ind. ASR)

Preserving useful mid-term properties (e.g. speaker/emotion ID)

Higher memory is required

Optimal Frame Length: 200 ms WHY

 Table 3: TIMIT PER for different frame lengths (ms).

	25	50	100	200	300	400
CNN	30.0	21.7	18.8	18.2	18.6	19.0
SincNet	27.7	20.6	17.6	17.4	17.6	17.7
Sinc ² Net	27.1	20.7	17.3	16.9	17.4	17.7

Optimal Frame Length: 200 ms WHY

 Table 3: TIMIT PER for different frame lengths (ms).

	25	50	100	200	300	400
CNN	30.0	21.7	18.8	18.2	18.6	19.0
SincNet	27.7	20.6	17.6	17.4	17.6	17.7
Sinc ² Net	27.1	20.7	17.3	16.9	17.4	17.7

1. Optimal Temporal Masking or Coarticulation Modelling – Optimal combination of masker and maskee

2. Optimal Syllable Modelling

– Mean syllable length in English is 200 ms (Greenberg et al, 1999)

Wrap-up for Part II

- Waveform acoustic modelling via convolutional layer
- A general formulation for interpretable CNNs with modulated kernel-based filters (X-Net) was derived
- Learned filters were studied statistically/perceptually
- Mid-term (~ 200ms) processing is required for raw waveform modelling through X-Nets

"Not until we are lost do we begin to understand ... "

- Henry David Thoreau

That's It!

- Thanks for Your Attention
- Q/A

- Acknowledgements:
 - Supported by EPSRC Project EP/R012180/1 (SpeechWave)
 - Benefited from discussion with Zoran Cvetkovic (KCL)

SincNet – Practical Considerations

- Sinc length is finite \rightarrow imperfect response
 - Apply a tapered window
- Monitor the cut-off frequencies value ($0 < f_i < f_s/2$)
- Amplitude learning is not necessary
- Initialisation of Parameters (cut-off frequencies)
 - Any perceptual scale may be used, e.g. Mel, Bark, ERB
 - Using random initialisation is still fine (0 < f_i < $f_s/2$)

