

The University Of Sheffield.

Source-filter Separation of Speech Signal in the Phase Domain

Erfan Loweimi Jon Barker Thomas Hain

July, 2015

Outline

- Problems with phase spectrum
- Group delay function (GDF)
- Phase information content
- Speech signal decomposition
- Phase-based source-filter separation
- Feature extraction for ASR
- Conclusion

Problems

Historical Considerations

- Historical Considerations
 - Ohm's acoustic law (1843) + Helmholtz (1875)

- Historical Considerations
 - Ohm's acoustic law (1843) + Helmholtz (1875)
 - "the percepted quality of a tone depends solely on the *number* and *relative strength* of its partial simple tones, and not on their relative phases"

- Historical Considerations
 - Ohm's acoustic law (1843) + Helmholtz (1875)
 - "the percepted quality of a tone depends solely on the *number* and *relative strength* of its partial simple tones, and not on their relative phases"
 - Although some studies show that the auditory system is not totally "phase deaf", this law forms the status qua

• Phase wrapping

- Phase wrapping
 - Chaotic/noise-like behaviour
 - Lacks any meaningful trend or extrema points
 - Physical interpretation
 - Mathematical modelling

- Phase wrapping
 - Chaotic/noise-like behaviour
 - Lacks any meaningful trend or extrema points
 - Physical interpretation
 - Mathematical modelling

UKSpeech 2015

Erfan Loweimi

- Only informative in long-term (> x00 ms)
 - Violates stationarity assumption !
 - In short frames (~ 30 ms), it is generally believed that the phase spectrum does not contribute much to speech quality/intelligibility

$$\tau_X(\omega) = -\frac{d}{d\omega} \arg[X(\omega)] = -Im\{\frac{d}{d\omega}\log(X(\omega))\}$$

$$\tau_X(\omega) = -\frac{d}{d\omega} \arg[X(\omega)] = -Im\{\frac{d}{d\omega}\log(X(\omega))\}$$
$$\tau_X(\omega) = \frac{X_{Re}(\omega)Y_{Re}(\omega) + X_{Im}(\omega)Y_{Im}(\omega)}{|X(\omega)|^2}$$

$$\tau_X(\omega) = -\frac{d}{d\omega} \arg[X(\omega)] = -Im\{\frac{d}{d\omega}\log(X(\omega))\}$$
$$\tau_X(\omega) = \frac{X_{Re}(\omega)Y_{Re}(\omega) + X_{Im}(\omega)Y_{Im}(\omega)}{|X(\omega)|^2}$$

- Pros
 - Resembles the magnitude spectrum
 - High frequency resolution
 - Additive

$$\tau_X(\omega) = -\frac{d}{d\omega} \arg[X(\omega)] = -Im\{\frac{d}{d\omega}\log(X(\omega))\}$$

$$\tau_X(\omega) = \frac{X_{Re}(\omega)Y_{Re}(\omega) + X_{Im}(\omega)Y_{Im}(\omega)}{|X(\omega)|^2}$$

- Pros
 - Resembles the magnitude spectrum
 - High frequency resolution
 - Additive
- Cons
 - Too spiky

Phase Information Content

• What is the information?

Phase Information Content

- What is the information?
 - Context dependent
 - Information theory: average of uncertainty
 - Speech: lingual content, speaker ID, ...

Phase Information Content

- What is the information?
 - Context dependent
 - Information theory: average of uncertainty
 - Speech: lingual content, speaker ID, ...
- Is phase informative?
 - From perceptual viewpoint
 - From signal processing viewpoint

For any signal

$$\begin{aligned} X(\omega) &= |X(\omega)| \cdot e^{j\phi_X(\omega)} \\ X(\omega) &= X_{MinPh}(\omega) \cdot X_{AllPass}(\omega) \\ &= |X_{MinPh}(\omega)| e^{j\phi_{MinPh}(\omega)} \cdot 1 e^{j\phi_{AllPass}(\omega)} \end{aligned}$$

• For any signal

$$\begin{aligned} X(\omega) &= |X(\omega)| \cdot e^{j\phi_X(\omega)} \\ X(\omega) &= X_{MinPh}(\omega) \cdot X_{AllPass}(\omega) \\ &= |X_{MinPh}(\omega)| e^{(j\phi_{MinPh}(\omega) + \phi_{AllPass}(\omega))} \end{aligned}$$

$$\begin{cases} |X(\omega)| = |X_{MinPh}(\omega)| \\ \phi_X(\omega) = \phi_{MinPh}(\omega) + \phi_{AllPass}(\omega) \end{cases}$$

For any signal

$$\begin{cases} |X(\omega)| = |X_{MinPh}(\omega)| \\ \phi_X(\omega) = \phi_{MinPh}(\omega) + \phi_{AllPass}(\omega) \end{cases}$$

* Is there any relation between phase and magnitude spectra?

For any signal

$$\begin{cases} |X(\omega)| = |X_{MinPh}(\omega)| \\ \phi_X(\omega) = \phi_{MinPh}(\omega) + \phi_{AllPass}(\omega) \end{cases}$$

* Is there any relation between phase and magnitude spectra?

$$|X_{MinPh}(\omega)|$$
 HiL.Tran $\phi_{MinPh}(\omega)$

For any signal

$$\begin{cases} |X(\omega)| = |X_{MinPh}(\omega)| \\ \phi_X(\omega) = \phi_{MinPh}(\omega) + \phi_{AllPass}(\omega) \end{cases}$$

* Is there any relation between phase and magnitude spectra?

$$|X_{MinPh}(\omega)|$$
 HiL.Tran $\phi_{MinPh}(\omega)$

• For speech ...

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| . |X_{Exc}(\omega)| \end{cases}$$

• For speech ...

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| |X_{Exc}(\omega)| = |X_{MinPh}(\omega)| \end{cases}$$

For speech

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| |X_{Exc}(\omega)| = |X_{MinPh}(\omega)| \\ |X_{MinPh}(\omega)| & \text{HiL.Tran} & \arg[X_{MinPh}(\omega)] \end{cases}$$

For speech

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| . |X_{Exc}(\omega)| = |X_{MinPh}(\omega)| \\ |X_{MinPh}(\omega)| & \text{HiL.Tran} \quad \arg[X_{MinPh}(\omega)] \\ \arg[X_{MinPh}(\omega)] = \arg[X_{VT}(\omega)] + \arg[X_{Exc}(\omega)]. \end{cases}$$

For speech

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| . |X_{Exc}(\omega)| = |X_{MinPh}(\omega)| \\ |X_{MinPh}(\omega)| & \underbrace{\text{HiL.Tran}} & \arg[X_{MinPh}(\omega)] \\ \arg[X_{MinPh}(\omega)] = \arg[X_{VT}(\omega)] + \arg[X_{Exc}(\omega)]. \end{cases}$$

• Goal ...

UKSpeech 2015

For speech

$$\begin{cases} |X(\omega)| = |X_{VT}(\omega)| . |X_{Exc}(\omega)| = |X_{MinPh}(\omega)| \\ |X_{MinPh}(\omega)| & \underbrace{\text{HiL.Tran}} & \arg[X_{MinPh}(\omega)] \\ \arg[X_{MinPh}(\omega)] = \arg[X_{VT}(\omega)] + \arg[X_{Exc}(\omega)]. \end{cases}$$

• Goal ...

UKSpeech 2015

Erfan Loweimi

• In Frequency domain

• In Quefrency domain

• In Frequency domain

$$\arg[\mathbf{X}_{MinPh}(\omega)] = Hil\{log|\mathbf{X}_{MinPh}(\omega)|\}$$
$$= -\frac{1}{2\pi}log|\mathbf{X}_{MinPh}(\omega)| * cot(\frac{\omega}{2})$$

- In Quefrency domain
 - Apply a proper lifter on the complex cepstrum

• In Frequency domain

$$\arg[\mathbf{X}_{MinPh}(\omega)] = Hil\{log|X_{MinPh}(\omega)|\}$$
$$= -\frac{1}{2\pi}log|X_{MinPh}(\omega)| * cot(\frac{\omega}{2})$$

- In Quefrency domain
 - Apply a proper lifter on the complex cepstrum

• In Frequency domain

$$\arg[\mathbf{X}_{MinPh}(\omega)] = Hil\{log|X_{MinPh}(\omega)|\}$$
$$= -\frac{1}{2\pi}log|X_{MinPh}(\omega)| * cot(\frac{\omega}{2})$$

- In Quefrency domain
 - Apply a proper lifter on the complex cepstrum

Speech is mixed-phase

MinPhase component

$$arg[X_{MinPh}(\omega)]$$

Erfan Loweimi

MinPhase component

11/18

Trend/Fluctuation Separation

Trend/Fluctuation Separation

Trend/Fluctuation Separation

$$\begin{cases} \hat{\tau}_{VT}(\omega) = signum(\tau_{VT}(\omega)).|\tau_{VT}(\omega)|^{\alpha} \\ signum(\tau_{VT}(\omega)) = \frac{\tau_{VT}(\omega)}{|\tau_{VT}(\omega)|} \end{cases}$$

UKSpeech 2015

Erfan Loweimi

UKSpeech 2015

Erfan Loweimi

$$\begin{cases} \tau_X(t) = -\frac{d}{dt} \arg[X_{MinPh}(t)] = -\frac{d}{dt} Trend - \frac{d}{dt} Fluctuation \\ \mathcal{F}\{\tau_X(t)\} = -j\omega \mathcal{F}\{Trend\} - j\omega \mathcal{F}\{Fluctuation\} \end{cases}$$

$$\begin{cases} \tau_X(t) = -\frac{d}{dt} \arg[X_{MinPh}(t)] = -\frac{d}{dt} Trend - \frac{d}{dt} Fluctuation \\ \mathcal{F}\{\tau_X(t)\} = -j\omega \mathcal{F}\{Trend\} - j\omega \mathcal{F}\{Fluctuation\} \end{cases}$$

$$\begin{cases} \tau_X(t) = -\frac{d}{dt} \arg[X_{MinPh}(t)] = -\frac{d}{dt} Trend - \frac{d}{dt} Fluctuation \\ \mathcal{F}\{\tau_X(t)\} = -j\omega \mathcal{F}\{Trend\} - j\omega \mathcal{F}\{Fluctuation\} \end{cases}$$

Decomposition in log-magnitude domain

 $\log |X(n,\omega)|$

Smoothed Spec.

$$au_X(n,\omega)$$

UKSpeech 2015

Erfan Loweimi

Decomposition in log-magnitude domain

 $\log |X(n,\omega)|$

Smoothed Spec.

$$au_X(n,\omega)$$

UKSpeech 2015

Erfan Loweimi

Feature Extraction for ASR

- i) $arg[X_{VT}] \to DCT \Rightarrow PHVT$
- ii) $\tau_{VT} \rightarrow DCT \Rightarrow GDVT$
- iii) $\tau_{VT} \rightarrow MelFilterbank \rightarrow DCT \Rightarrow MFGDVT$
- iv) $\tau_{VT} \rightarrow Mel \ Filterbank \rightarrow Boost \rightarrow DCT \Rightarrow BMFGDVT$

Feature Extraction for ASR

Feature	TestSet A	TestSet B	TestSet C
MFCC	66.2	71.4	64.9
PLP	67.3	70.6	66.2
PNCC	71.2	72.8	71.5
MODGDF	64.3	66.4	59.5
CGDF	67.0	73.0	59.4
PS	66.0	71.2	64.6
i) PHVT	69.0	74.8	67.1
ii) GDVT	70.5	75.9	69.1
iii) MFGDVT	72.8	77.3	72.8
iv) BMFGDVT	73.2	77.4	73.4
		·	•

i) $arg[X_{VT}] \rightarrow DCT \Rightarrow PHVT$

ii) $\tau_{VT} \rightarrow DCT \Rightarrow GDVT$

* Aurora 2 * Average of 0-20 dB

 $\mathsf{UKSpeec}^{\mathsf{iii}}) \ \tau_{VT} \to MelFilterbank \to DCT \Rightarrow MFGDVT$

iv) $\tau_{VT} \rightarrow Mel \ Filterbank \rightarrow Boost \rightarrow DCT \Rightarrow BMFGDVT$

Conclusion

- This talk was about phase-based source-filter deconvolution
- Separation was done using Trend/Fluctuation analysis of the phase spectrum of the minimumphase component of speech
- Proposed method succeeds in decomposing the speech into vocal tract and excitation components
- Extracted feature from the vocal tract component of the phase shows good robustness on Aurora 2 task

That is it!

- Thanks for your attention
- Question